Advertisement

Hamiltonicity Below Dirac’s Condition

  • Bart M. P. Jansen
  • László KozmaEmail author
  • Jesper Nederlof
Conference paper
  • 289 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11789)

Abstract

Dirac’s theorem (1952) is a classical result of graph theory, stating that an n-vertex graph (\(n \ge 3\)) is Hamiltonian if every vertex has degree at least n/2. Both the value n/2 and the requirement for every vertex to have high degree are necessary for the theorem to hold.

In this work we give efficient algorithms for determining Hamiltonicity when either of the two conditions are relaxed. More precisely, we show that the Hamiltonian Cycle problem can be solved in time \(c^k \cdot n^{O(1)}\), for a fixed constant c, if at least \(n-k\) vertices have degree at least n/2, or if all vertices have degree at least \(n/2 - k\). The running time is, in both cases, asymptotically optimal, under the exponential-time hypothesis (ETH).

The results extend the range of tractability of the Hamiltonian Cycle problem, showing that it is fixed-parameter tractable when parameterized below a natural bound. In addition, for the first parameterization we show that a kernel with O(k) vertices can be found in polynomial time.

Keywords

Hamiltonicity Fixed-parameter tractability Kernelization 

Notes

Acknowledgement

We thank Naomi Nishimura, Ian Goulden, and Wendy Rush for obtaining a copy of Bondy’s 1980 research report [8].

References

  1. 1.
    Abu-Khzam, F.N., Fellows, M.R., Langston, M.A., Suters, W.H.: Crown structures for vertex cover kernelization. Theory Comput. Syst. 41(3), 411–430 (2007).  https://doi.org/10.1007/s00224-007-1328-0MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a tight lower bound. Algorithmica 61(3), 638–655 (2011).  https://doi.org/10.1007/s00453-010-9428-7MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995).  https://doi.org/10.1145/210332.210337MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bellman, R.: Dynamic programming treatment of the travelling salesman problem. J. Assoc. Comput. Mach. 9, 61–63 (1962)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bezáková, I., Curticapean, R., Dell, H., Fomin, F.V.: Finding detours is fixed-parameter tractable. In: Proceedings of 44th ICALP. pp. 54:1–54:14 (2017).  https://doi.org/10.4230/LIPIcs.ICALP.2017.54
  6. 6.
    Björklund, A.: Determinant sums for undirected Hamiltonicity. SIAM J. Comput. 43(1), 280–299 (2014).  https://doi.org/10.1137/110839229MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bondy, J.A., Chvátal, V.: A method in graph theory. Discrete Math. 15(2), 111–135 (1976)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bondy, J.: Longest Paths and Cycles in Graphs of High Degree. Research report, Department of Combinatorics and Optimization, University of Waterloo (1980)Google Scholar
  9. 9.
    Büyükçolak, Y., Gözüpek, D., Özkan, S., Shalom, M.: On one extension of Dirac’s theorem on Hamiltonicity. Discrete Appl. Math. 252, 10–16 (2019).  https://doi.org/10.1016/j.dam.2017.01.011MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chor, B., Fellows, M., Juedes, D.W.: Linear kernels in linear time, or how to save \(k\) colors in \(O\)\((n^2)\) steps. In: Proceedings of 30th WG, pp. 257–269 (2004).  https://doi.org/10.1007/978-3-540-30559-0_22CrossRefGoogle Scholar
  11. 11.
    Crowston, R., Jones, M., Mnich, M.: Max-cut parameterized above the Edwards-Erdős bound. Algorithmica 72(3), 734–757 (2015).  https://doi.org/10.1007/s00453-014-9870-zMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21275-3CrossRefzbMATHGoogle Scholar
  13. 13.
    Dahlhaus, E., Hajnal, P., Karpinski, M.: On the parallel complexity of Hamiltonian cycle and matching problem on dense graphs. J. Algorithms 15(3), 367–384 (1993).  https://doi.org/10.1006/jagm.1993.1046MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  15. 15.
    Dirac, G.A.: Some theorems on abstract graphs. Proc. London Math. Soc. s3 2(1), 69–81 (1952).  https://doi.org/10.1112/plms/s3-2.1.69MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Fellows, M.R.: Blow-Ups, Win/Win’s, and crown rules: some new directions in FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39890-5_1CrossRefGoogle Scholar
  17. 17.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-29953-XCrossRefzbMATHGoogle Scholar
  18. 18.
    Gould, R.J.: Recent advances on the Hamiltonian problem: survey III. Graphs Comb. 30(1), 1–46 (2014).  https://doi.org/10.1007/s00373-013-1377-xMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Guo, J., Hüffner, F., Niedermeier, R.: A structural view on parameterizing problems: distance from triviality. In: Proceedings of 1st IWPEC, pp. 162–173 (2004).  https://doi.org/10.1007/978-3-540-28639-4_15CrossRefGoogle Scholar
  20. 20.
    Gutin, G.Z., Kim, E.J., Lampis, M., Mitsou, V.: Vertex cover problem parameterized above and below tight bounds. Theory Comput. Syst. 48(2), 402–410 (2011).  https://doi.org/10.1007/s00224-010-9262-yMathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gutin, G.Z., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems parameterized above or below tight bounds. J. Comput. Syst. Sci. 77(2), 422–429 (2011).  https://doi.org/10.1016/j.jcss.2010.06.001MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gutin, G.Z., Patel, V.: Parameterized traveling salesman problem: beating the average. SIAM J. Discrete Math. 30(1), 220–238 (2016).  https://doi.org/10.1137/140980946MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Häggkvist, R.: On the structure of non-Hamiltonian graphs I. Comb. Probab. Comput. 1(1), 27–34 (1992).  https://doi.org/10.1017/S0963548300000055MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. Soc. Indust. Appl. Math. 10, 196–210 (1962).  https://doi.org/10.1137/0110015MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001).  https://doi.org/10.1006/jcss.2001.1774MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Jansen, B.M.P., Kozma, L., Nederlof, J.: Hamiltonicity below Dirac’s condition. CoRR abs/1902.01745 (2019). http://arxiv.org/abs/1902.01745
  27. 27.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W., Bohlinger, J.D. (eds.) IRSS, pp. 85–103. Springer, Heidelberg (1972).  https://doi.org/10.1007/978-1-4684-2001-2_9CrossRefGoogle Scholar
  28. 28.
    Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res. Lett. 1(2), 49–51 (1982).  https://doi.org/10.1016/0167-6377(82)90044-XMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Knuth, D.: The art of computer programming: updates; pre-fascicle 8A, A draft of section 7.2.2.4: Hamiltonian paths and cycles. In: Addison-Wesley Series in Computer Science and Information Proceedings, vol. 4. Addison-Wesley (2018). https://www-cs-faculty.stanford.edu/~knuth/fasc8a.ps.gz
  30. 30.
    Kühn, D., Osthus, D.: Hamilton cycles in graphs and hypergraphs: an extremal perspective. CoRR abs/1402.4268 (2014). http://arxiv.org/abs/1402.4268
  31. 31.
    Lawler, E., Shmoys, D., Kan, A., Lenstra, J.: The Traveling Salesman Problem. Wiley, Hoboken (1985)zbMATHGoogle Scholar
  32. 32.
    Li, H.: Generalizations of Dirac’s theorem in Hamiltonian graph theory-a survey. Discrete Math. 313(19), 2034–2053 (2013).  https://doi.org/10.1016/j.disc.2012.11.025MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. J. Algorithms 31(2), 335–354 (1999).  https://doi.org/10.1006/jagm.1998.0996MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Comput. Syst. Sci. 75(2), 137–153 (2009).  https://doi.org/10.1016/j.jcss.2008.08.004MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Nash-Williams, C.: Edge-disjoint Hamiltonian circuits in graphs with large valency. In: Mirksy, L. (ed.) Studies in Pure Mathematics, pp. 157–183. Academic Press, London (1971)Google Scholar
  36. 36.
    Ore, O.: Note on Hamilton circuits. Am. Math. Monthly 67(1), 55 (1960). http://www.jstor.org/stable/2308928MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bart M. P. Jansen
    • 1
  • László Kozma
    • 2
    Email author
  • Jesper Nederlof
    • 1
  1. 1.Eindhoven University of TechnologyEindhovenNetherlands
  2. 2.Freie Universität BerlinBerlinGermany

Personalised recommendations