Advertisement

The Exponential-Time Complexity of Counting (Quantum) Graph Homomorphisms

  • Hubie Chen
  • Radu CurticapeanEmail author
  • Holger Dell
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11789)

Abstract

Many graph parameters can be expressed as homomorphism counts to fixed target graphs; this includes the number of independent sets and the number of k-colorings for any fixed k. Dyer and Greenhill (RSA 2000) gave a sweeping complexity dichotomy for such problems, classifying which target graphs render the problem polynomial-time solvable or \(\#\mathrm {P}\)-hard. In this paper, we give a new and shorter proof of this theorem, with previously unknown tight lower bounds under the exponential-time hypothesis. We similarly strengthen complexity dichotomies by Focke, Goldberg, and Živný (SODA 2018) for counting surjective homomorphisms to fixed graphs. Both results crucially rely on our main contribution, a complexity dichotomy for evaluating linear combinations of homomorphism numbers to fixed graphs. In the terminology of Lovász (Colloquium Publications 2012), this amounts to counting homomorphisms to quantum graphs.

Keywords

Graph homomorphisms Exponential-time hypothesis Counting complexity Complexity dichotomy Surjective homomorphisms 

References

  1. 1.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte polynomial in vertex-exponential time. In: 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, 25–28 October 2008, Philadelphia, PA, USA, pp. 677–686. IEEE Computer Society (2008).  https://doi.org/10.1109/FOCS.2008.40
  2. 2.
    Borgs, C., Chayes, J.T., Kahn, J., Lovász, L.: Left and right convergence of graphs with bounded degree. Random Struct. Algorithms 42(1), 1–28 (2013).  https://doi.org/10.1002/rsa.20414MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 646–661. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70575-8_53CrossRefGoogle Scholar
  4. 4.
    Bulatov, A.A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem. In: Proceedings of 44th Symposium on Foundations of Computer Science (FOCS 2003), 11–14 October 2003, Cambridge, MA, USA, pp. 562–571 (2003).  https://doi.org/10.1109/SFCS.2003.1238229
  5. 5.
    Bulatov, A.A., Dyer, M.E., Goldberg, L.A., Jalsenius, M., Jerrum, M., Richerby, D.: The complexity of weighted and unweighted #CSP. J. Comput. Syst. Sci. 78(2), 681–688 (2012).  https://doi.org/10.1016/j.jcss.2011.12.002MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bulatov, A.A., Grohe, M.: The complexity of partition functions. Theor. Comput. Sci. 348(2–3), 148–186 (2005).  https://doi.org/10.1016/j.tcs.2005.09.011MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cai, J.-Y., Chen, X.: Complexity of counting CSP with complex weights. J. ACM 64(3), 19:1–19:39 (2017).  https://doi.org/10.1145/2822891MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cai, J.-Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: a dichotomy theorem. SIAM J. Comput. 42(3), 924–1029 (2013).  https://doi.org/10.1137/110840194MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cai, J.-Y., Lu, P., Xia, M.: The complexity of complex weighted boolean #CSP. J. Comput. Syst. Sci. 80(1), 217–236 (2014).  https://doi.org/10.1016/j.jcss.2013.07.003MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, H., Mengel, S.: Counting answers to existential positive queries: a complexity classification. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, 26 June–01 July 2016, pp. 315–326 (2016).  https://doi.org/10.1145/2902251.2902279
  11. 11.
    Curticapean, R.: Block interpolation: a framework for tight exponential-time counting complexity. Inf. Comput. 261(Part), 265–280 (2018).  https://doi.org/10.1016/j.ic.2018.02.008MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Curticapean, R., Dell, H., Marx D.: Homomorphisms are a good basis for counting small subgraphs. In: Hatami, H., McKenzie, P., King, V., (eds.) Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, 19–23 June 2017, pp. 210–223. ACM (2017).  https://doi.org/10.1145/3055399.3055502
  13. 13.
    Cygan, M., et al.: Tight bounds for graph homomorphism and subgraph isomorphism. In: SODA, pp. 1643–1649. SIAM (2016).  https://doi.org/10.1137/1.9781611974331.ch112
  14. 14.
    Dell, H., Husfeldt, T., Marx, D., Taslaman, N., Wahlen, M.: Exponential time complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms 10(4), 21:1–21:32 (2014).  https://doi.org/10.1145/2635812MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dyer, M.E., Goldberg, L.A., Paterson, M.: On counting homomorphisms to directed acyclic graphs. J. ACM 54(6), 27 (2007).  https://doi.org/10.1145/1314690.1314691MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dyer, M.E., Greenhill, C.S.: The complexity of counting graph homomorphisms. Random Struct. Algorithms 17(3–4), 260–289 (2000).  https://doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-WMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Dyer, M.E., Richerby, D.: An effective dichotomy for the counting constraint satisfaction problem. SIAM J. Comput. 42(3), 1245–1274 (2013).  https://doi.org/10.1137/100811258MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Faben, J., Jerrum, M.: The complexity of parity graph homomorphism: an initial investigation. Theory Comput. 11, 35–57 (2015).  https://doi.org/10.4086/toc.2015.v011a002MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. TTCSAES. Springer, Heidelberg (2006).  https://doi.org/10.1007/3-540-29953-XCrossRefzbMATHGoogle Scholar
  20. 20.
    Focke, J.,Goldberg, L.A., Živný, S.: The complexity of counting surjective homomorphisms and compactions. In: Czumaj, A. (ed.) Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, 7–10 January 2018, pp. 1772–1781. SIAM (2018).  https://doi.org/10.1137/1.9781611975031.116CrossRefGoogle Scholar
  21. 21.
    Freedman, M., Lovász, L., Schrijver, A.: Reflection positivity, rank connectivity, and homomorphism of graphs. J. Am. Math. Soc. 20(1), 37–51 (2007).  https://doi.org/10.1090/S0894-0347-06-00529-7MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Göbel, A., Goldberg, L.A., Richerby, D.: The complexity of counting homomorphisms to cactus graphs modulo 2. TOCT 6(4), 17:1–17:29 (2014).  https://doi.org/10.1145/2635825MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Göbel, A., Goldberg, L.A., Richerby, D.: Counting homomorphisms to square-free graphs, modulo 2. TOCT 8(3), 12:1–12:29 (2016).  https://doi.org/10.1145/2898441MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Goldberg, L.A., Grohe, M., Jerrum, M., Thurley, M.: A complexity dichotomy for partition functions with mixed signs. SIAM J. Comput. 39(7), 3336–3402 (2010).  https://doi.org/10.1137/090757496MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001).  https://doi.org/10.1006/jcss.2000.1727MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001).  https://doi.org/10.1006/jcss.2001.1774MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lovász, L.: Large networks and graph limits, volume 60 of colloquium publications. American Mathematical Society (2012). https://www.ams.org/bookstore-getitem/item=COLL-60
  28. 28.
    Schrijver, A.: Graph invariants in the edge model. In: Grötschel, M., Katona, O.H., Sági, G. (eds.) Building Bridges. BSMS, vol. 19, pp. 487–498. Springer, Berlin (2008).  https://doi.org/10.1007/978-3-540-85221-6_16CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer Science and Information SystemsBirkbeck University of LondonLondonUK
  2. 2.Basic Algorithms Research Copenhagen (BARC)CopenhagenDenmark
  3. 3.IT University of CopenhagenCopenhagenDenmark

Personalised recommendations