Maximum Matchings and Minimum Blocking Sets in $$\varTheta _6$$-Graphs

• Therese Biedl
• Veronika Irvine
• Kshitij Jain
• Philipp Kindermann
• Anna Lubiw
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11789)

Abstract

$$\varTheta _6$$-graphs are important geometric graphs that have many applications especially in wireless sensor networks. They are equivalent to Delaunay graphs where empty equilateral triangles take the place of empty circles. We investigate lower bounds on the size of maximum matchings in these graphs. The best known lower bound is n/3, where n is the number of vertices of the graph, which comes from half-$$\varTheta _6$$-graphs that are subgraphs of $$\varTheta _6$$-graphs. Babu et al. (2014) conjectured that any $$\varTheta _6$$-graph has a (near-)perfect matching (as is true for standard Delaunay graphs). Although this conjecture remains open, we improve the lower bound to $$(3n-8)/7$$.

We also relate the size of maximum matchings in $$\varTheta _6$$-graphs to the minimum size of a blocking set. Every edge of a $$\varTheta _6$$-graph on point set P corresponds to an empty triangle that contains the endpoints of the edge but no other point of P. A blocking set has at least one point in each such triangle. We prove that the size of a maximum matching is at least $$\beta (n)/2$$ where $$\beta (n)$$ is the minimum, over all $$\varTheta _6$$-graphs with n vertices, of the minimum size of a blocking set. In the other direction, lower bounds on matchings can be used to prove bounds on $$\beta$$, allowing us to show that $$\beta (n)\ge 3n/4-2$$.

Keywords

Theta-six graphs Proximity graphs Maximum matching Minimum blocking set Triangular-distance Delaunay graph

Notes

Acknowledgements

This work was done by a University of Waterloo problem solving group. We thank the other participants, Alexi Turcotte and Anurag Murty Naredla, for inspiring discussions, and the anonymous reviewers for helpful comments.

References

1. 1.
Ábrego, B.M., et al.: Matching points with circles and squares. In: Akiyama, J., Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742, pp. 1–15. Springer, Heidelberg (2005).
2. 2.
Ábrego, B.M., et al.: Matching points with squares. Discrete Comput. Geom. 41(1), 77–95 (2009)
3. 3.
Aichholzer, O., et al.: Blocking Delaunay triangulations. Comput. Geom.: Theory Appl. 46(2), 154–159 (2013)
4. 4.
Alzoubi, K.M., Li, X., Wang, Y., Wan, P., Frieder, O.: Geometric spanners for wireless ad hoc networks. IEEE Trans. Parallel Distrib. Syst. 14(4), 408–421 (2003)
5. 5.
Aronov, B., Dulieu, M., Hurtado, F.: Witness (Delaunay) graphs. Comput. Geom.: Theory Appl. 44(6–7), 329–344 (2011)
6. 6.
Aronov, B., Dulieu, M., Hurtado, F.: Witness Gabriel graphs. Comput. Geom.: Theory Appl. 46(7), 894–908 (2013)
7. 7.
Aurenhammer, F., Paulini, G.: On shape Delaunay tessellations. Inf. Process. Lett. 114(10), 535–541 (2014)
8. 8.
Babu, J., Biniaz, A., Maheshwari, A., Smid, M.H.M.: Fixed-orientation equilateral triangle matching of point sets. Theor. Comput. Sci. 555, 55–70 (2014). Also in WALCOM 2013
9. 9.
Bauer, D., Broersma, H., Schmeichel, E.: Toughness in graphs–a survey. Graphs Comb. 22(1), 1–35 (2006)
10. 10.
Berge, C.: Sur le couplage maximum d’un graphe. Comptes Rendus de l’Académie des Sciences, Paris 247, 258–259 (1958)
11. 11.
Biedl, T., Biniaz, A., Irvine, V., Jain, K., Kindermann, P., Lubiw, A.: Maximum matchings and minimum blocking sets in $$\theta _6$$-graphs. Arxiv report (2019). https://arxiv.org/abs/1901.01476
12. 12.
Biniaz, A., Maheshwari, A., Smid, M.H.M.: Higher-order triangular-distance Delaunay graphs: graph-theoretical properties. Comput. Geom.: Theory Appl. 48(9), 646–660 (2015). Also in CALDAM 2015
13. 13.
Biniaz, A., Maheshwari, A., Smid, M.H.M.: Matchings in higher-order Gabriel graphs. Theor. Comput. Sci. 596, 67–78 (2015)
14. 14.
Bonichon, N., Gavoille, C., Hanusse, N., Ilcinkas, D.: Connections between theta-graphs, delaunay triangulations, and orthogonal surfaces. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 266–278. Springer, Heidelberg (2010).
15. 15.
Bose, P., De Carufel, J.L., Hill, D., Smid, M.H.M.: On the spanning and routing ratio of theta-four. In: Chan, T.M. (ed.) Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2361–2370. SIAM (2019)
16. 16.
Bose, P., Fagerberg, R., Van Renssen, A., Verdonschot, S.: Competitive routing in the half-$$\theta _6$$-graph. In: Rabani, Y. (ed.) Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1319–1328. SIAM (2012)Google Scholar
17. 17.
Bose, P., Morin, P., van Renssen, A., Verdonschot, S.: The $$\theta _5$$-graph is a spanner. Comput. Geom. 48(2), 108–119 (2015). Also in WG 2013
18. 18.
Chew, P.: There are planar graphs almost as good as the complete graph. J. Comput. Syst. Sci. 39(2), 205–219 (1989)
19. 19.
Clarkson, K.L.: Approximation algorithms for shortest path motion planning. In: Aho, A.V. (ed.) Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC), pp. 56–65. ACM (1987)Google Scholar
20. 20.
Damian, M., Iacono, J., Winslow, A.: Spanning properties of Theta-Theta-6. arXiv:1808.04744 (2018)
21. 21.
Dillencourt, M.B.: Toughness and Delaunay triangulations. Discrete Comput. Geom. 5, 575–601 (1990)
22. 22.
Drysdale III, R.L.S.: A practical algorithm for computing the Delaunay triangulation for convex distance functions. In: Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 159–168 (1990)Google Scholar
23. 23.
Fischer, M., Lukovszki, T., Ziegler, M.: Geometric searching in walkthrough animations with weak spanners in real time. In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 163–174. Springer, Heidelberg (1998).
24. 24.
Keil, J.M.: Approximating the complete Euclidean graph. In: Karlsson, R., Lingas, A. (eds.) SWAT 1988. LNCS, vol. 318, pp. 208–213. Springer, Heidelberg (1988).
25. 25.
Keil, J.M., Gutwin, C.A.: Classes of graphs which approximate the complete Euclidean graph. Discrete Comput. Geom. 7, 13–28 (1992)
26. 26.
Morin, P., Verdonschot, S.: On the average number of edges in Theta graphs. Online J. Anal. Comb., page to appear (2014). Also in ANALCO 2014Google Scholar
27. 27.
Nishizeki, T., Baybars, I.: Lower bounds on the cardinality of the maximum matchings of planar graphs. Discrete Math. 28(3), 255–267 (1979)
28. 28.
Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. 22, 107–111 (1947)

© Springer Nature Switzerland AG 2019

Authors and Affiliations

• Therese Biedl
• 1
• 1
• Veronika Irvine
• 1
• Kshitij Jain
• 2
• Philipp Kindermann
• 3
Email author
• Anna Lubiw
• 1
1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada