Mechanisms of Environmental and Occupational Carcinogenesis

  • Scott M. Langevin
  • Karl T. KelseyEmail author


Carcinogenesis is a complex, multistep process, involving accumulation of genetic and epigenetic alterations that confer a growth and/or survival advantage, through which cells gradually achieve unchecked growth and eventually become fully malignant and invasive. There are numerous sources of physical, chemical, and biological exposures that stem from endogenous and exogenous sources—including occupational settings—that can induce such genetic and epigenetic alterations. This damage is repaired through a high-fidelity DNA repair process that operates through multiple pathways, although the system is imperfect and varies by repair mechanism, potentially resulting in incorporation of DNA damage and epigenetic alterations. This chapter provides an introduction to mechanisms of environmental and occupational carcinogenesis and DNA repair, and provides examples of physical and chemical carcinogens and epigenetic effectors.


Carcinogen Mutation DNA damage DNA repair Endocrine disruptor 



Carcinogenesis is a complex multistep process involving an accumulation of genetic and epigenetic changes that alter the phenotype of the cell and imbue a growth or survival advantage that can eventually allow affected cells to develop malignant properties and invade into other tissues. Exogenous physical, chemical, and biological exposures stemming from the environment or occupational setting can induce such somatic genetic and epigenetic changes through a variety of mechanisms. Fortunately, eukaryotic cells have evolved a highly efficient mechanism for repairing such damage, although unfortunately, despite the high-fidelity of the process, mutations still may go unrepaired and become incorporated into the genome. Understanding how physical, chemical, and biological exposures can lead to genetic and epigenetic aberrations is paramount for discerning how occupational exposures can modulate risk for cancer development.


  1. 1.
    Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Weinberg RA. The biology of cancer. New York: Garland Science; 2007.Google Scholar
  4. 4.
    Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–3.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Comings DE. A general theory of carcinogenesis. Proc Natl Acad Sci U S A. 1973;70(12):3324–8.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Berger AH, Knudson AG, Pandolfi PP. A continuum model for tumour suppression. Nature. 2011;476(7359):163–9.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963–8.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Braakhuis BJ, Tabor MP, Kummer JA, Leemans CR, Brakenhoff RH. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63(8):1727–30.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Weston A, Harris C. Chemical carcinogensis. In: Bast RJ, Kufe D, Pollock R, Weichselbaum M, Holland J, Frei E, editors. Holland-Frei cancer medicine. 5th ed. Hamilton: BC Decker; 2000.Google Scholar
  10. 10.
    Vamvakas S, Vock EH, Lutz WK. On the role of DNA double-strand breaks in toxicity and carcinogenesis. Crit Rev Toxicol. 1997;27(2):155–74.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Yassi A, Kjellstrom T, de Kok T, Guidotti TL. Basic environmental health. New York: Oxford University Press; 2001.CrossRefGoogle Scholar
  12. 12.
    Reisz JA, Bansal N, Qian J, Zhao W, Furdui CM. Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid Redox Signal. 2014;21(2):260–92.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Desouky O, Ding N, Zhou G. Targeted and non-targeted effects of ionizing radiation. J Radiati Res Appl Sci. 2015;8(2):247–54.CrossRefGoogle Scholar
  14. 14.
    Peak JG, Peak MJ, MacCoss M. DNA breakage caused by 334-nm ultraviolet light is enhanced by naturally occurring nucleic acid components and nucleotide coenzymes. Photochem Photobiol. 1984;39(5):713–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Walrant P, Santus R. N-formyl-kynurenine, a tryptophan photooxidation product, as a photodynamic sensitizer. Photochem Photobiol. 1974;19(6):411–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    McCormick JP, Fischer JR, Pachlatko JP, Eisenstark A. Characterization of a cell-lethal product from the photooxidation of tryptophan: hydrogen peroxide. Science. 1976;191(4226):468–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Krasnovsky AA Jr. Photoluminescence of singlet oxygen in pigment solutions. Photochem Photobiol. 1979;29:29–36.CrossRefGoogle Scholar
  18. 18.
    Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med. 2016;35(2):186–202.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, part 2: radiofrequency electromagnetic fields. IARC Monogr Eval Carcinog Risks Hum. 2013;102(Pt 2):1–460.PubMedCentralGoogle Scholar
  20. 20.
    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Non-ionizing radiation, part 1: static and extremely low-frequency (ELF) electric and magnetic fields. IARC Monogr Eval Carcinog Risks Hum. 2002;80:1–395.PubMedCentralGoogle Scholar
  21. 21.
    Phillips JL, Singh NP, Lai H. Electromagnetic fields and DNA damage. Pathophysiology. 2009;16(2–3):79–88.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Conney AH, Poirier MC, Surh YJ, Kadlubar FF. Elizabeth Cavert Miller: May 2, 1920-October 14, 1987; James A. Miller: May 27, 1915-December 24, 2000. Biographical Memoirs; National Academy of Sciences, vol. 90. Washington, DC: National Academies Press; 2009. p. 1–38.Google Scholar
  23. 23.
    NTP. Report on carcinogens. 12th ed. Research Triangle: U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program; 2011.Google Scholar
  24. 24.
    Irigaray P, Belpomme D. Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis. 2010;31(2):135–48.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Williams D, Foye W, Lemke T, editors. Foye’s principles of medicinal chemistry. 6th ed. Baltimore: Lippincott Williams & Wilkins; 2007.Google Scholar
  26. 26.
    Martelli A, Robbiano L, Gazzaniga GM, Brambilla G. Comparative study of DNA damage and repair induced by ten N-nitroso compounds in primary cultures of human and rat hepatocytes. Cancer Res. 1988;48(15):4144–52.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Wiencke JK, McDowell ML, Bodell WJ. Molecular dosimetry of DNA adducts and sister chromatid exchanges in human lymphocytes treated with benzo[a]pyrene. Carcinogenesis. 1990;11(9):1497–502.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Vollhardt KPC, Schore NE. Organic chemistry: structure and function. 4th ed. New York: W.H. Freeman and Company; 2003.Google Scholar
  29. 29.
    Shrivastav N, Li D, Essigmann JM. Chemical biology of mutagenesis and DNA repair: cellular responses to DNA alkylation. Carcinogenesis. 2010;31(1):59–70.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Singer B. Sites in nucleic acids reacting with alkylating agents of differing carcinogenicity of mutagenicity. J Toxicol Environ Health. 1977;2(6):1279–95.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Gates KS. An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol. 2009;22(11):1747–60.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hlavin EM, Smeaton MB, Miller PS. Initiation of DNA interstrand cross-link repair in mammalian cells. Environ Mol Mutagen. 2010;51(6):604–24.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Rothfuss A, Grompe M. Repair kinetics of genomic interstrand DNA cross-links: evidence for DNA double-strand break-dependent activation of the Fanconi anemia/BRCA pathway. Mol Cell Biol. 2004;24(1):123–34.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sczepanski JT, Jacobs AC, Van Houten B, Greenberg MM. Double-strand break formation during nucleotide excision repair of a DNA interstrand cross-link. Biochemistry. 2009;48(32):7565–7.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wilson VL, Weston A, Manchester DK, et al. Alkyl and aryl carcinogen adducts detected in human peripheral lung. Carcinogenesis. 1989;10(11):2149–53.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    van Schooten FJ, Hillebrand MJ, van Leeuwen FE, et al. Polycyclic aromatic hydrocarbon-DNA adducts in lung tissue from lung cancer patients. Carcinogenesis. 1990;11(9):1677–81.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Li D, Wang M, Dhingra K, Hittelman WN. Aromatic DNA adducts in adjacent tissues of breast cancer patients: clues to breast cancer etiology. Cancer Res. 1996;56(2):287–93.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Pfohl-Leszkowicz A, Grosse Y, Carriere V, et al. High levels of DNA adducts in human colon are associated with colorectal cancer. Cancer Res. 1995;55(23):5611–6.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Hamada K, Umemoto A, Kajikawa A, et al. Mucosa-specific DNA adducts in human small intestine: a comparison with the colon. Carcinogenesis. 1994;15(11):2677–80.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Wang M, Abbruzzese JL, Friess H, et al. DNA adducts in human pancreatic tissues and their potential role in carcinogenesis. Cancer Res. 1998;58(1):38–41.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Lu AL, Li X, Gu Y, Wright PM, Chang DY. Repair of oxidative DNA damage: mechanisms and functions. Cell Biochem Biophys. 2001;35(2):141–70.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Klaunig JE, Wang Z, Pu X, Zhou S. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol Appl Pharmacol. 2011;254(2):86–99.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kuchino Y, Mori F, Kasai H, et al. Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature. 1987;327(6117):77–9.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Schiestl RH, Aubrecht J, Yap WY, Kandikonda S, Sidhom S. Polychlorinated biphenyls and 2,3,7,8-tetrachlorodibenzo-p-dioxin induce intrachromosomal recombination in vitro and in vivo. Cancer Res. 1997;57(19):4378–83.PubMedPubMedCentralGoogle Scholar
  45. 45.
    International Agency for Research on Cancer. Some metals and metallic compounds. IARC Monographs 1980;23.Google Scholar
  46. 46.
    International Agency for Research on Cancer. Cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monogr Eval Carcinog Risks Hum. 2006;86:1–294.Google Scholar
  47. 47.
    Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 58. Lyon: International Agency for Research on Cancer; 1993.Google Scholar
  48. 48.
    Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21(1):28–44.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Galanis A, Karapetsas A, Sandaltzopoulos R. Metal-induced carcinogenesis, oxidative stress and hypoxia signalling. Mutat Res. 2009;674(1–2):31–5.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Witkiewicz-Kucharczyk A, Bal W. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicol Lett. 2006;162(1):29–42.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Barnes DE, Lindahl T. Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445–76.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bertram JS. The molecular biology of cancer. Mol Asp Med. 2000;21(6):167–223.CrossRefGoogle Scholar
  53. 53.
    Swenberg JA, Lu K, Moeller BC, et al. Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol Sci. 2011;120(Suppl 1):S130–45.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Cavalieri EL, Rogan EG. Unbalanced metabolism of endogenous estrogens in the etiology and prevention of human cancer. J Steroid Biochem Mol Biol. 2011;125(3–5):169–80.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Dianov GL, Parsons JL. Co-ordination of DNA single strand break repair. DNA Repair (Amst). 2007;6(4):454–60.CrossRefGoogle Scholar
  56. 56.
    Winters TA, Henner WD, Russell PS, McCullough A, Jorgensen TJ. Removal of 3′-phosphoglycolate from DNA strand-break damage in an oligonucleotide substrate by recombinant human apurinic/apyrimidinic endonuclease 1. Nucleic Acids Res. 1994;22(10):1866–73.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Martinez MC, Andriantsitohaina R. Reactive nitrogen species: molecular mechanisms and potential significance in health and disease. Antioxid Redox Signal. 2009;11(3):669–702.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Blair IA. Lipid hydroperoxide-mediated DNA damage. Exp Gerontol. 2001;36(9):1473–81.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lindahl T, Wood RD. Quality control by DNA repair. Science. 1999;286(5446):1897–905.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Hegi ME, Liu L, Herman JG, et al. Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol. 2008;26(25):4189–99.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Brettel K, Byrdin M. Reaction mechanisms of DNA photolyase. Curr Opin Struct Biol. 2010;20(6):693–701.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Caldecott KW. Mammalian DNA single-strand break repair: an X-ra(y)ted affair. BioEssays. 2001;23(5):447–55.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Svilar D, Goellner EM, Almeida KH, Sobol RW. Base excision repair and lesion-dependent subpathways for repair of oxidative DNA damage. Antioxid Redox Signal. 2011;14(12):2491–507.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sung JS, Demple B. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. FEBS J. 2006;273(8):1620–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kastrinos F, Syngal S. Recently identified colon cancer predispositions: MYH and MSH6 mutations. Semin Oncol. 2007;34(5):418–24.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Rouillon C, White MF. The evolution and mechanisms of nucleotide excision repair proteins. Res Microbiol. 2011;162(1):19–26.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Rechkunova NI, Lavrik OI. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair. Subcell Biochem. 2010;50:251–77.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, DiGiovanna JJ. Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience. 2007;145(4):1388–96.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kunz C, Saito Y, Schar P. DNA repair in mammalian cells: mismatched repair: variations on a theme. Cell Mol Life Sci. 2009;66(6):1021–38.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Marti TM, Kunz C, Fleck O. DNA mismatch repair and mutation avoidance pathways. J Cell Physiol. 2002;191(1):28–41.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Power DG, Gloglowski E, Lipkin SM. Clinical genetics of hereditary colorectal cancer. Hematol Oncol Clin North Am. 2010;24(5):837–59.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009;76(1):1–18.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wood RD. Mammalian nucleotide excision repair proteins and interstrand crosslink repair. Environ Mol Mutagen. 2010;51(6):520–6.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Kitao H, Takata M. Fanconi anemia: a disorder defective in the DNA damage response. Int J Hematol. 2011;93(4):417–24.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res. 2011;711(1–2):61–72.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Shuen AY, Foulkes WD. Inherited mutations in breast cancer genes--risk and response. J Mammary Gland Biol Neoplasia. Apr 2011;16(1):3–15.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Pruthi S, Gostout BS, Lindor NM. Identification and management of women with BRCA mutations or hereditary predisposition for breast and ovarian Cancer. Mayo Clin Proc. 2010;85(12):1111–20.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Frappart PO, McKinnon PJ. Ataxia-telangiectasia and related diseases. NeuroMolecular Med. 2006;8(4):495–511.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Lange SS, Takata K, Wood RD. DNA polymerases and cancer. Nat Rev Cancer. 2011;11(2):96–110.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Friedberg EC. Suffering in silence: the tolerance of DNA damage. Nat Rev Mol Cell Biol. 2005;6(12):943–53.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Alexandrov LB, Stratton MR. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr Opin Genet Dev. 2014;24:52–60.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Howard BD, Tessman I. Identification of the altered bases in mutated single-stranded DNA. Ii. In vivo mutagenesis by 5-bromodeoxyuridine and 2-aminopurine. J Mol Biol. 1964;9:364–71.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Setlow RB, Carrier WL. Pyrimidine dimers in ultraviolet-irradiated DNA’s. J Mol Biol. 1966;17(1):237–54.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Nik-Zainal S, Kucab JE, Morganella S, et al. The genome as a record of environmental exposure. Mutagenesis. 2015;30(6):763–70.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Brash DE. UV signature mutations. Photochem Photobiol. 2015;91(1):15–26.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Huang MN, Yu W, Teoh WW, et al. Genome-scale mutational signatures of aflatoxin in cells, mice, and human tumors. Genome Res. 2017;27(9):1475–86.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Alexandrov LB, Ju YS, Haase K, et al. Mutational signatures associated with tobacco smoking in human cancer. Science. 2016;354(6312):618–22.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Calvanese V, Lara E, Kahn A, Fraga MF. The role of epigenetics in aging and age-related diseases. Ageing Res Rev. 2009;8(4):268–76.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A. 2005;102(30):10604–9.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Langevin SM, Houseman EA, Christensen BC, et al. The influence of aging, environmental exposures and local sequence features on the variation of DNA methylation in blood. Epigenetics. 2011;6(7):908–19.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Christensen BC, Houseman EA, Marsit CJ, et al. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet. 2009;5(8):e1000602.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Das PM, Singal R. DNA methylation and cancer. J Clin Oncol. 2004;22(22):4632–42.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood). 2004;229(10):988–95.CrossRefGoogle Scholar
  96. 96.
    Shi H, Wang MX, Caldwell CW. CpG islands: their potential as biomarkers for cancer. Expert Rev Mol Diagn. 2007;7(5):519–31.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Fraga MF, Herranz M, Espada J, et al. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res. 2004;64(16):5527–34.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Lujambio A, Esteller M. How epigenetics can explain human metastasis: a new role for microRNAs. Cell Cycle. 2009;8(3):377–82.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Gronbaek K, Hother C, Jones PA. Epigenetic changes in cancer. APMIS. 2007;115(10):1039–59.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Hoffmann MJ, Schulz WA. Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol. 2005;83(3):296–321.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    International Agency for Research on Cancer. Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum. 2012;100F:249–94.Google Scholar
  102. 102.
    Fenga C, Gangemi S, Costa C. Benzene exposure is associated with epigenetic changes (Review). Mol Med Rep. 2016;13(4):3401–5.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Bollati V, Baccarelli A, Hou L, et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007;67(3):876–80.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Hu J, Ma H, Zhang W, Yu Z, Sheng G, Fu J. Effects of benzene and its metabolites on global DNA methylation in human normal hepatic L02 cells. Environ Toxicol. 2014;29(1):108–16.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    International Agency for Research on Cancer. Arsenic, metals, fibres and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100C:41–93.Google Scholar
  106. 106.
    Chen H, Liu J, Zhao CQ, Diwan BA, Merrick BA, Waalkes MP. Association of c-myc overexpression and hyperproliferation with arsenite-induced malignant transformation. Toxicol Appl Pharmacol. 2001;175(3):260–8.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proc Natl Acad Sci U S A. 1997;94(20):10907–12.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Pogribny IP, Rusyn I. Environmental toxicants, epigenetics, and cancer. Adv Exp Med Biol. 2013;754:215–32.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Reichard JF, Puga A. Effects of arsenic exposure on DNA methylation and epigenetic gene regulation. Epigenomics. 2010;2(1):87–104.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Davis CD, Uthus EO, Finley JW. Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon. J Nutr. 2000;130(12):2903–9.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Cui X, Wakai T, Shirai Y, Hatakeyama K, Hirano S. Chronic oral exposure to inorganic arsenate interferes with methylation status of p16INK4a and RASSF1A and induces lung cancer in A/J mice. Toxicol Sci. 2006;91(2):372–81.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Huang YC, Hung WC, Chen WT, Yu HS, Chai CY. Sodium arsenite-induced DAPK promoter hypermethylation and autophagy via ERK1/2 phosphorylation in human uroepithelial cells. Chem Biol Interact. 2009;181(2):254–62.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Marsit CJ, Houseman EA, Schned AR, Karagas MR, Kelsey KT. Promoter hypermethylation is associated with current smoking, age, gender and survival in bladder cancer. Carcinogenesis. 2007;28(8):1745–51.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    International Agency for Research on Cancer. Inorganic and organic lead compounds. IARC Monogr Eval Carcinog Risks Hum. 2006;87:39–468.Google Scholar
  115. 115.
    Hanna CW, Bloom MS, Robinson WP, et al. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod. 2012;27(5):1401–10.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Tajuddin SM, Amaral AF, Fernandez AF, et al. Genetic and non-genetic predictors of LINE-1 methylation in leukocyte DNA. Environ Health Perspect. 2013;121(6):650–6.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Wright RO, Schwartz J, Wright RJ, et al. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect. 2010;118(6):790–5.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Li C, Yang X, Xu M, Zhang J, Sun N. Epigenetic marker (LINE-1 promoter) methylation level was associated with occupational lead exposure. Clin Toxicol (Phila). 2013;51(4):225–9.CrossRefGoogle Scholar
  119. 119.
    Eid A, Bihaqi SW, Renehan WE, Zawia NH. Developmental lead exposure and lifespan alterations in epigenetic regulators and their correspondence to biomarkers of Alzheimer’s disease. Alzheimers Dement (Amst). 2016;2:123–31.Google Scholar
  120. 120.
    Bihaqi SW, Zawia NH. Alzheimer’s disease biomarkers and epigenetic intermediates following exposure to Pb in vitro. Curr Alzheimer Res. 2012;9(5):555–62.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Senut MC, Sen A, Cingolani P, Shaik A, Land SJ, Ruden DM. Lead exposure disrupts global DNA methylation in human embryonic stem cells and alters their neuronal differentiation. Toxicol Sci. 2014;139(1):142–61.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sanchez OF, Lee J, Yu King Hing N, Kim SE, Freeman JL, Yuan C. Lead (Pb) exposure reduces global DNA methylation level by non-competitive inhibition and alteration of dnmt expression. Metallomics. 2017;9(2):149–60.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    International Agency for Research on Cancer. Arsenic, metals, fibres and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100C:121–45.Google Scholar
  124. 124.
    Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. Effects of cadmium on DNA-(Cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Exp Cell Res. 2003;286(2):355–65.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP. Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect. 2007;115(10):1454–9.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Castillo P, Ibanez F, Guajardo A, Llanos MN, Ronco AM. Impact of cadmium exposure during pregnancy on hepatic glucocorticoid receptor methylation and expression in rat fetus. PLoS One. 2012;7(9):e44139.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Inglot P, Lewinska A, Potocki L, et al. Cadmium-induced changes in genomic DNA-methylation status increase aneuploidy events in a pig Robertsonian translocation model. Mutat Res. 2012;747(2):182–9.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Jiang G, Xu L, Song S, et al. Effects of long-term low-dose cadmium exposure on genomic DNA methylation in human embryo lung fibroblast cells. Toxicology. 2008;244(1):49–55.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Poirier LA, Vlasova TI. The prospective role of abnormal methyl metabolism in cadmium toxicity. Environ Health Perspect. 2002;110(Suppl 5):793–5.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Yuan D, Ye S, Pan Y, Bao Y, Chen H, Shao C. Long-term cadmium exposure leads to the enhancement of lymphocyte proliferation via down-regulating p16 by DNA hypermethylation. Mutat Res. 2013;757(2):125–31.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Wang B, Li Y, Tan Y, et al. Low-dose Cd induces hepatic gene hypermethylation, along with the persistent reduction of cell death and increase of cell proliferation in rats and mice. PLoS One. 2012;7(3):e33853.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Zhou ZH, Lei YX, Wang CX. Analysis of aberrant methylation in DNA repair genes during malignant transformation of human bronchial epithelial cells induced by cadmium. Toxicol Sci. 2012;125(2):412–7.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Fujishiro H, Okugaki S, Yasumitsu S, Enomoto S, Himeno S. Involvement of DNA hypermethylation in down-regulation of the zinc transporter ZIP8 in cadmium-resistant metallothionein-null cells. Toxicol Appl Pharmacol. 2009;241(2):195–201.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Zhang C, Liang Y, Lei L, et al. Hypermethylations of RASAL1 and KLOTHO is associated with renal dysfunction in a Chinese population environmentally exposed to cadmium. Toxicol Appl Pharmacol. 2013;271(1):78–85.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Sanders AP, Smeester L, Rojas D, et al. Cadmium exposure and the epigenome: exposure-associated patterns of DNA methylation in leukocytes from mother-baby pairs. Epigenetics. 2014;9(2):212–21.CrossRefGoogle Scholar
  136. 136.
    International Agency for Research on Cancer. Arsenic, metals, fibres and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100C:169–218.Google Scholar
  137. 137.
    Broday L, Cai J, Costa M. Nickel enhances telomeric silencing in Saccharomyces cerevisiae. Mutat Res. 1999;440(2):121–30.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Chen H, Ke Q, Kluz T, Yan Y, Costa M. Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol. 2006;26(10):3728–37.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Ke Q, Davidson T, Chen H, Kluz T, Costa M. Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis. 2006;27(7):1481–8.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Chen H, Giri NC, Zhang R, et al. Nickel ions inhibit histone demethylase JMJD1A and DNA repair enzyme ABH2 by replacing the ferrous iron in the catalytic centers. J Biol Chem. 2010;285(10):7374–83.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Ke Q, Li Q, Ellen TP, Sun H, Costa M. Nickel compounds induce phosphorylation of histone H3 at serine 10 by activating JNK-MAPK pathway. Carcinogenesis. 2008;29(6):1276–81.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    International Agency for Research on Cancer. Arsenic, metals, fibres and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100C:147–67.Google Scholar
  143. 143.
    Weidman JR, Dolinoy DC, Murphy SK, Jirtle RL. Cancer susceptibility: epigenetic manifestation of environmental exposures. Cancer J. 2007;13(1):9–16.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Zhou X, Sun H, Ellen TP, Chen H, Costa M. Arsenite alters global histone H3 methylation. Carcinogenesis. 2008;29(9):1831–6.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    International Agency for Research on Cancer. Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum. 2012;100F:309–38.Google Scholar
  146. 146.
    Sved J, Bird A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc Natl Acad Sci U S A. 1990;87(12):4692–6.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Rideout WM 3rd, Coetzee GA, Olumi AF, Jones PA. 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science. 1990;249(4974):1288–90.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Chen JX, Zheng Y, West M, Tang MS. Carcinogens preferentially bind at methylated CpG in the p53 mutational hot spots. Cancer Res. 1998;58(10):2070–5.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Denissenko MF, Pao A, Tang M, Pfeifer GP. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 1996;274(5286):430–2.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Yoon JH, Smith LE, Feng Z, Tang M, Lee CS, Pfeifer GP. Methylated CpG dinucleotides are the preferential targets for G-to-T transversion mutations induced by benzo[a]pyrene diol epoxide in mammalian cells: similarities with the p53 mutation spectrum in smoking-associated lung cancers. Cancer Res. 2001;61(19):7110–7.PubMedPubMedCentralGoogle Scholar
  151. 151.
    Feng Z, Hu W, Hu Y, Tang MS. Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proc Natl Acad Sci U S A. 2006;103(42):15404–9.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRefGoogle Scholar
  153. 153.
    Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.CrossRefGoogle Scholar
  154. 154.
    Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.CrossRefGoogle Scholar
  155. 155.
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.CrossRefGoogle Scholar
  156. 156.
    Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15.CrossRefGoogle Scholar
  157. 157.
    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature. 2013;499(7456):43–9.CrossRefGoogle Scholar
  158. 158.
    Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315–22.CrossRefGoogle Scholar
  159. 159.
    Cancer Genome Atlas Research Network, Kandoth C, Schultz N, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.CrossRefGoogle Scholar
  160. 160.
    Cancer Genome Atlas Research Network, Ley TJ, Miller C, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74.CrossRefGoogle Scholar
  161. 161.
    Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.CrossRefGoogle Scholar
  162. 162.
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519–25.CrossRefGoogle Scholar
  163. 163.
    Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333–9.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Langevin SM, Kelsey KT. Clinical epigenetics of lung cancer. In: Laurence J, Van Beusekom M, editors. Translating epigenetics to the clinic. Oxford: Academic Press; 2017. p. 97–133.CrossRefGoogle Scholar
  165. 165.
    Li X. Emerging role of mutations in epigenetic regulators including MLL2 derived from The Cancer Genome Atlas for cervical cancer. BMC Cancer. 2017;17(1):252.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010;140(6):883–99.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–16.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Schraufstatter I, Hyslop PA, Jackson JH, Cochrane CG. Oxidant-induced DNA damage of target cells. J Clin Invest. 1988;82(3):1040–50.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Ovrevik J, Refsnes M, Lag M, Brinchmann BC, Schwarze PE, Holme JA. Triggering mechanisms and inflammatory effects of combustion exhaust particles with implication for carcinogenesis. Basic Clin Pharmacol Toxicol. 2017;121(Suppl 3):55–62.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    International Agency for Research on Cancer. Diesel and gasoline engine exhaust and some nitroarenes. IARC Monogr Eval Carcinog Risks Hum. 2014;105:33–467.Google Scholar
  171. 171.
    International Agency for Research on Cancer. Outdoor air pollution. IARC Monogr Eval Carcinog Risks Hum. 2016;109:33–444.Google Scholar
  172. 172.
    Falcon-Rodriguez CI, Osornio-Vargas AR, Sada-Ovalle I, Segura-Medina P. Aeroparticles, composition, and lung diseases. Front Immunol. 2016;7:3.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Benedetti S, Nuvoli B, Catalani S, Galati R. Reactive oxygen species a double-edged sword for mesothelioma. Oncotarget. 2015;6(19):16848–65.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    International Agency for Research on Cancer. Some chemicals present in industrial and consumer products, food and drinking-water. IARC Monogr Eval Carcinog Risks Hum. 2013;101:149–284.Google Scholar
  175. 175.
    Eveillard A, Mselli-Lakhal L, Mogha A, et al. Di-(2-ethylhexyl)-phthalate (DEHP) activates the constitutive androstane receptor (CAR): a novel signalling pathway sensitive to phthalates. Biochem Pharmacol. 2009;77(11):1735–46.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Kambia N, Farce A, Belarbi K, et al. Docking study: PPARs interaction with the selected alternative plasticizers to di(2-ethylhexyl) phthalate. J Enzyme Inhib Med Chem. 2016;31(3):448–55.PubMedPubMedCentralGoogle Scholar
  177. 177.
    International Agency for Research on Cancer. Polychlorinated biphenyls and polybrominated biphenyls. IARC Monogr Eval Carcinog Risks Hum. 2016;107:39–440.Google Scholar
  178. 178.
    Boas M, Feldt-Rasmussen U, Skakkebaek NE, Main KM. Environmental chemicals and thyroid function. Eur J Endocrinol. 2006;154(5):599–611.PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    International Agency for Research on Cancer. Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum. 2012;100F:339–78.Google Scholar
  180. 180.
    Kietz S, Thomsen JS, Matthews J, Pettersson K, Strom A, Gustafsson JA. The Ah receptor inhibits estrogen-induced estrogen receptor beta in breast cancer cells. Biochem Biophys Res Commun. 2004;320(1):76–82.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Matthews J, Wihlen B, Thomsen J, Gustafsson JA. Aryl hydrocarbon receptor-mediated transcription: ligand-dependent recruitment of estrogen receptor alpha to 2,3,7,8-tetrachlorodibenzo-p-dioxin-responsive promoters. Mol Cell Biol. 2005;25(13):5317–28.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Dvorak Z, Vrzal R, Pavek P, Ulrichova J. An evidence for regulatory cross-talk between aryl hydrocarbon receptor and glucocorticoid receptor in HepG2 cells. Physiol Res. 2008;57(3):427–35.PubMedPubMedCentralGoogle Scholar
  183. 183.
    International Agency for Research on Cancer. DDT, lindane and 2,4-D. IARC Monogr Eval Carcinog Risks Hum. 2015;113Google Scholar
  184. 184.
    Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R. Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 2006;79(12):1160–9.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    International Agency for Research on Cancer. Pharmaceuticals. IARC Monogr. 2012;100A:175–218.Google Scholar
  186. 186.
    Couse JF, Korach KS. Estrogen receptor-alpha mediates the detrimental effects of neonatal diethylstilbestrol (DES) exposure in the murine reproductive tract. Toxicology. 2004;205(1–2):55–63.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Environmental HealthUniversity of Cincinnati College of MedicineCincinnatiUSA
  2. 2.Cincinnati Cancer CenterCincinnatiUSA
  3. 3.Department of EpidemiologyBrown UniversityProvidenceUSA
  4. 4.Department of Pathology and Laboratory MedicineBrown UniversityProvidenceUSA

Personalised recommendations