Advertisement

Lung Cancer: Mechanisms of Carcinogenesis by Asbestos

  • Brooke T. MossmanEmail author
  • Alessandro F. Gualtieri
Chapter
  • 19 Downloads

Abstract

Lung cancers have typically been reported in asbestos-exposed cohorts in smokers, and interactions between cigarette smoke and asbestos may be additive or multiplicative in the development of tumors. Research has indicated that some cellular and molecular events elicited by exposures to chemical carcinogens in cigarette smoke or asbestos fibers are different in lung epithelial cells, the target cells of lung carcinomas. We describe here contemporary concepts of lung cancer development and recent experimental studies providing an understanding of how asbestos and components of cigarette smoke act alone and together to cause lung cancers. We emphasize the importance of the tumor microenvironment including inflammation and fibrosis, interactions between different cell types in the lung that culminate in these events, and the role of epigenetics, a relatively new tool in understanding a number of common molecular events in carcinogenesis. Lastly, we provide a perspective on the multiple properties of different asbestos fiber types that may be critical in assessing their toxicity and carcinogenicity in lung tissue and the development of a quantitative model to predict the pathogenicity of mineral fibers in lung cancers.

Keywords

Lung cancers Cigarette smoke Polycyclic aromatic hydrocarbons (PAH) Asbestos Inflammasome Epigenetics Cell signaling pathways 

References

  1. 1.
    Fong KM, Larsen JE, Wright C, et al. Molecular basis of lung carcinogenesis. In: Coleman WB, Tsongalis GJ, editors. The molecular basis of human cancer. New York: Springer; 2017. p. 447–96.CrossRefGoogle Scholar
  2. 2.
    Coleman WB, Tsongalis GJ. Cancer epidemiology: incidence and etiology of human neoplasms. In: Coleman WB, Tsongalis GJ, editors. The molecular basis of human cancer. New York: Springer; 2017. p. 1–24.CrossRefGoogle Scholar
  3. 3.
    Testa JR. Asbestos and mesothelioma. Cham: Springer International; 2017. 407 p.CrossRefGoogle Scholar
  4. 4.
    Wehner AP, Felton DL, Company RJRT, Institute EPR. Biological interaction of inhaled mineral fibers and cigarette smoke: proceedings of an International Symposium/workshop, held at the Battelle Seattle Conference Center, April 10–14, 1988. Seattle, Washington: Battelle Press; 1989.Google Scholar
  5. 5.
    Case BW, Abraham JL, Meeker G, Pooley FD, Pinkerton KE. Applying definitions of “asbestos” to environmental and “low-dose” exposure levels and health effects, particularly malignant mesothelioma. J Toxicol Environ Health B Crit Rev. 2011;14(1–4):3–39.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lee RJ, Strohmeier BR, Bunker KL, Van Orden DR. Naturally occurring asbestos: a recurring public policy challenge. J Hazard Mater. 2008;153(1–2):1–21.PubMedCrossRefGoogle Scholar
  7. 7.
    Mossman BT, Alleman JE. Asbestos revisited. Sci Am. 1997;277(1):70–5.CrossRefGoogle Scholar
  8. 8.
    Gualtieri AF. Introduction (mineral fibres). In: Mineral fibres: crystal chemistry, chemical-physical properties, biological interaction and toxicity. London: European Mineralogical Union; 2017. p. 1–16.CrossRefGoogle Scholar
  9. 9.
    IARC. IARC monographs on the evaluation of the carcinogenic risk of chemicals to man: asbestos. IARC Monogr Eval Carcinog Risk Chem Man. 1977;14:1–106.Google Scholar
  10. 10.
    IARC. Arsenic, metals, fibres, and dusts. IARC Working Group. Lyon; 17–24 March 2009. IARC Monogr Eval Carcinog Risk Chem Hum C. 2012; 100C:219–316.Google Scholar
  11. 11.
    O’Hanley DS, Dyar MD. The composition of chrysotile and its relationship with lizardite. Can Mineral. 1998;36(3):727–39.Google Scholar
  12. 12.
    Gualtieri AF, Andreozzi GB, Tomatis M, Turci F. Iron from a geochemical viewpoint. Understanding toxicity/pathogenicity mechanisms in iron-bearing minerals with a special attention to mineral fibers. Free Radic Biol Med. 2019;13:321–37.Google Scholar
  13. 13.
    Bailey SW, America MSo. Hydrous phyllosilicates: (exclusive of micas). Chantilly, VA: Mineralogical Society of America; 1988.CrossRefGoogle Scholar
  14. 14.
    Hawthorne FC, Oberti R, Harlow GE, et al. Nomenclature of the amphibole supergroup. Am Mineral. 2012;97(11–12):2031–48.CrossRefGoogle Scholar
  15. 15.
    Guthrie GD Jr. Mineral properties and their contributions to particle toxicity. Environ Health Perspect. 1997;105(Suppl):51003–11.Google Scholar
  16. 16.
    Vallyathan V, Shi XL, Dalal NS, Irr W, Castranova V. Generation of free radicals from freshly fractured silica dust. Potential role in acute silica-induced lung injury. Am Rev Respir Dis. 1988;138(5):1213–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Liu W, Rose J, Plantevin S, Auffan M, Bottero JY, Vidaud C. Protein corona formation for nanomaterials and proteins of a similar size: hard or soft corona? Nanoscale. 2013;5(4):1658–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Stanton MF, Layard M, Tegeris A, et al. Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous minerals. J Natl Cancer Inst. 1981;67(5):965–75.PubMedGoogle Scholar
  19. 19.
    Churg A. Asbestos-related disease in the workplace and the environment: controversial issues. Monogr Pathol. 1993;36:54–77.Google Scholar
  20. 20.
    Deng ZJ, Liang M, Toth I, Monteiro MJ, Minchin RF. Molecular interaction of poly(acrylic acid) gold nanoparticles with human fibrinogen. ACS Nano. 2012;6(10):8962–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Harris RL Jr, Timbrell V. Relation of alveolar deposition to the diameter and length of glass fibres. Inhaled particles IV. Oxford: Pergamon Press; 1977.Google Scholar
  22. 22.
    Gualtieri AF, Mossman BT, Roggli VL. Towards a general model to predict the toxicity and pathogenicity of mineral fibres. In: Mineral fibres: crystal chemistry, chemical-physical properties, biological interaction and toxicity: European Mineralogical Union–EMU notes in mineralogy; 2017. p. 501–32.CrossRefGoogle Scholar
  23. 23.
    Yeh HC, Phalen RF, Raabe OG. Factors influencing the deposition of inhaled particles. Environ Health Perspect. 1976;15:147–56.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    van Oss CJ, Naim JO, Costanzo PM, Giese RF, Wu W, Sorling AF. Impact of different asbestos species and other mineral particles on pulmonary pathogenesis. Clays Clay Miner. 1999;47(6):697–707.CrossRefGoogle Scholar
  25. 25.
    Hardy JA, Aust AE. Iron in asbestos chemistry and carcinogenicity. Chem Rev. 1995;95(1):97–118.CrossRefGoogle Scholar
  26. 26.
    Kamp DW. Asbestos-induced lung diseases: an update. Transl Res. 2009;153(4):143–52.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Zecchina A, Rivallan M, Berlier G, Lamberti C, Ricchiardi G. Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts. Phys Chem Chem Phys. 2007;9(27):3483–99.PubMedCrossRefGoogle Scholar
  28. 28.
    Wei B, Yang L, Zhu O, et al. Multivariate analysis of trace elements distribution in hair of pleural plaques patients and health group in a rural area from China. Hair Ther Transpl. 2014;4:125.CrossRefGoogle Scholar
  29. 29.
    Dixon JR, Lowe DB, Richards DE, Cralley LJ, Stokinger HE. The role of trace metals in chemical carcinogenesis: asbestos cancers. Cancer Res. 1970;30(4):1068–74.PubMedGoogle Scholar
  30. 30.
    Bernstein DM, Hoskins JA. The health effects of chrysotile: current perspective based upon recent data. Regul Toxicol Pharmacol. 2006;45(3):252–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Bernstein DM, Donaldson K, Decker U, et al. A biopersistence study following exposure to chrysotile asbestos alone or in combination with fine particles. Inhal Toxicol. 2008;20(11):1009–28.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bernstein D, Rogers R, Smith P. The biopersistence of Canadian chrysotile asbestos following inhalation: final results through 1 year after cessation of exposure. Inhal Toxicol. 2005;17(1):1–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Utembe W, Potgieter K, Stefaniak AB, Gulumian M. Dissolution and biodurability: important parameters needed for risk assessment of nanomaterials. Part Fibre Toxicol. 2015;12:11.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Pott F. Asbestos use and carcinogenicity in Germany and a comparison with animal studies. Ann Occup Hyg. 1994;38(4):589–600, 420.PubMedGoogle Scholar
  35. 35.
    Hesterberg TW, Chase G, Axten C, et al. Biopersistence of synthetic vitreous fibers and amosite asbestos in the rat lung following inhalation. Toxicol Appl Pharmacol. 1998;151(2):262–75.PubMedCrossRefGoogle Scholar
  36. 36.
    Bernstein D, Pavlisko EN. Differential pathological response and pleural transport of mineral fibres. In: Gualtieri AF, editor. Mineral fibres: crystal chemistry, chemical-physical properties, biological interaction and toxicity: European Mineralogical Union and the Mineralogical Society of Great Britain & Ireland; 2017. p. 417–34.Google Scholar
  37. 37.
    Wypych F, Adad LB, Mattoso N, Marangon AA, Schreiner WH. Synthesis and characterization of disordered layered silica obtained by selective leaching of octahedral sheets from chrysotile and phlogopite structures. J Colloid Interface Sci. 2005;283(1):107–12.PubMedCrossRefGoogle Scholar
  38. 38.
    Pollastri S, Gualtieri AF, Vigliaturo R, et al. Stability of mineral fibres in contact with human cell cultures. An in situ muXANES, muXRD and XRF iron mapping study. Chemosphere. 2016;164:547–57.PubMedCrossRefGoogle Scholar
  39. 39.
    Studer AM, Limbach LK, Van Duc L, et al. Nanoparticle cytotoxicity depends on intracellular solubility: comparison of stabilized copper metal and degradable copper oxide nanoparticles. Toxicol Lett. 2010;197(3):169–74.PubMedCrossRefGoogle Scholar
  40. 40.
    Sabella S, Carney RP, Brunetti V, et al. A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale. 2014;6(12):7052–61.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Pollastri S, Gualtieri AF, Lassinantti Gualtieri M, Hanuskova M, Cavallo A, Gaudino G. The zeta potential of mineral fibres. J Hazard Mater. 2014;276:469–79.PubMedCrossRefGoogle Scholar
  42. 42.
    Roggli VL, Sharma A. Analysis of tissue mineral fiber content. Pathology of asbestos-associated diseases. Berlin: Springer; 2014. p. 253–92.CrossRefGoogle Scholar
  43. 43.
    Lippmann M. Toxicological and epidemiological studies on effects of airborne fibers: coherence and public [corrected] health implications. Crit Rev Toxicol. 2014;44(8):643–95.PubMedCrossRefGoogle Scholar
  44. 44.
    Barlow CA, Grespin M, Best EA. Asbestos fiber length and its relation to disease risk. Inhal Toxicol. 2017;29(12–14):541–54.PubMedCrossRefGoogle Scholar
  45. 45.
    Roggli VL. The so-called short-fiber controversy: literature review and critical analysis. Arch Pathol Lab Med. 2015;139(8):1052–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Oberdorster G, Graham U. Predicting EMP hazard: Lessons from studies with inhaled fibrous and non-fibrous nano- and micro-particles. Toxicol Appl Pharmacol. 2018;361:50–61.PubMedCrossRefGoogle Scholar
  47. 47.
    Mossman BT, Kessler JB, Ley BW, Craighead JE. Interaction of crocidolite asbestos with hamster respiratory mucosa in organ culture. Lab Invest. 1977;36(2):131–9.PubMedGoogle Scholar
  48. 48.
    Hansen K, Mossman BT. Generation of superoxide (O2-.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res. 1987;47(6):1681–6.PubMedGoogle Scholar
  49. 49.
    Keeling B, Hobson J, Churg A. Effects of cigarette smoke on epithelial uptake of non-asbestos mineral particles in tracheal organ culture. Am J Respir Cell Mol Biol. 1993;9(3):335–40.PubMedCrossRefGoogle Scholar
  50. 50.
    McFadden D, Wright JL, Wiggs B, Churg A. Smoking inhibits asbestos clearance. Am Rev Respir Dis. 1986a;133(3):372–4.PubMedGoogle Scholar
  51. 51.
    McFadden D, Wright J, Wiggs B, Churg A. Cigarette smoke increases the penetration of asbestos fibers into airway walls. Am J Pathol. 1986b;123(1):95–9.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Churg A. The uptake of mineral particles by pulmonary epithelial cells. Am J Respir Crit Care Med. 1996;154(4 Pt 1):1124–40.PubMedCrossRefGoogle Scholar
  53. 53.
    Sekhon H, Wright J, Churg A. Effects of cigarette smoke and asbestos on airway, vascular and mesothelial cell proliferation. Int J Exp Pathol. 1995;76(6):411–8.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Churg A, Sun J, Zay K. Cigarette smoke increases amosite asbestos fiber binding to the surface of tracheal epithelial cells. Am J Physiol. 1998;275(3 Pt 1):L502–8.PubMedGoogle Scholar
  55. 55.
    Kennedy AR, Little JB. The transport and localization of benzo(a)pyrene-hematite and hematite-210Po in the hamster lung following intratracheal instillation. Cancer Res. 1974;34(6):1344–52.PubMedGoogle Scholar
  56. 56.
    Eastman A, Mossman BT, Bresnick E. Formation and removal of benzo(a)pyrene adducts of DNA in hamster tracheal epithelial cells. Cancer Res. 1981;41(7):2605–10.PubMedGoogle Scholar
  57. 57.
    Eastman A, Mossman BT, Bresnick E. Influence of asbestos on the uptake of benzo(a)pyrene and DNA alkylation in hamster tracheal epithelial cells. Cancer Res. 1983;43(3):1251–5.PubMedGoogle Scholar
  58. 58.
    Mossman BT, Eastman A, Bresnick E. Asbestos and benzo[a]pyrene act synergistically to induce squamous metaplasia and incorporation of [3H]thymidine in hamster tracheal epithelium. Carcinogenesis. 1984;5(11):1401–4.PubMedCrossRefGoogle Scholar
  59. 59.
    Mossman BT, Craighead JE. Use of hamster tracheal organ cultures for assessing the cocarcinogenic effects of inorganic particulates on the respiratory epithelium. Prog Exp Tumor Res. 1979;24:37–47.PubMedCrossRefGoogle Scholar
  60. 60.
    Mossman BT, Craighead JE. Comparative cocarcinogenic effects of crocidolite asbestos, hematite, kaolin and carbon in implanted tracheal organ cultures. Ann Occup Hyg. 1982;26(1–4):553–67.PubMedGoogle Scholar
  61. 61.
    Auerbach O, Stout AP, Hammond EC, Garfinkel L. Changes in bronchial epithelium in relation to cigarette smoking and in relation to lung cancer. N Engl J Med. 1961;265:253–67.PubMedCrossRefGoogle Scholar
  62. 62.
    Mossman BT, Adler KB, Craighead JE. Interaction of carbon particles with tracheal epithelium in organ culture. Environ Res. 1978;16(1–3):110–22.PubMedCrossRefGoogle Scholar
  63. 63.
    Mossman BT, Craighead JE, MacPherson BV. Asbestos-induced epithelial changes in organ cultures of hamster trachea: inhibition by retinyl methyl ether. Science. 1980;207(4428):311–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Woodworth CD, Mossman BT, Craighead JE. Interaction of asbestos with metaplastic squamous epithelium developing in organ cultures of hamster trachea. Environ Health Perspect. 1983a;51:27–33.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Woodworth CD, Mossman BT, Craighead JE. Squamous metaplasia of the respiratory tract. Possible pathogenic role in asbestos-associated bronchogenic carcinoma. Lab Invest. 1983b;48(5):578–84.PubMedGoogle Scholar
  66. 66.
    Woodworth CD, Mossman BT, Craighead JE. Induction of squamous metaplasia in organ cultures of hamster trachea by naturally occurring and synthetic fibers. Cancer Res. 1983c;43(10):4906–12.PubMedGoogle Scholar
  67. 67.
    Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science. 2017;355(6331):1330–4.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    DeGregori J. Connecting cancer to its causes requires incorporation of effects on tissue microenvironments. Cancer Res. 2017;77(22):6065–8.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Berenblum I. A re-evaluation of the concept of cocarciongenesis. Prog Exp Tumor Res. 1969;11:21–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Martín-Subero JI, Esteller M. Epigenetic mechanisms in cancer development. In: The molecular basis of human cancer. Berlin: Springer; 2017. p. 263–75.CrossRefGoogle Scholar
  71. 71.
    Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Riely GJ, Kris MG, Rosenbaum D, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res. 2008;14(18):5731–4.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Spira A, Beane J, Shah V, et al. Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci U S A. 2004;101(27):10143–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Shah V, Sridhar S, Beane J, Brody JS, Spira ASIEGE. Smoking induced epithelial gene expression database. Nucleic Acids Res. 2005;33(Database issue):D573–9.PubMedCrossRefGoogle Scholar
  75. 75.
    Spira A, Beane JE, Shah V, et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med. 2007;13(3):361–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Mäki-Nevala S, Sarhadi VK, Knuuttila A, et al. Driver gene and novel mutations in asbestos-exposed lung adenocarcinoma and malignant mesothelioma detected by exome sequencing. Lung. 2016;194(1):125–35.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Paris C, Do P, Mastroianni B, et al. Association between lung cancer somatic mutations and occupational exposure in never-smokers. Eur Respir J. 2017;50(4):1700716.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Gyoba J, Shan S, Roa W, Bedard EL. Diagnosing lung cancers through examination of micro-RNA biomarkers in blood, plasma, serum and sputum: a review and summary of current literature. Int J Mol Sci. 2016;17(4):494.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Qi J, Mu D. MicroRNAs and lung cancers: from pathogenesis to clinical implications. Front Med. 2012;6(2):134–55.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Mizuno K, Mataki H, Seki N, Kumamoto T, Kamikawaji K, Inoue H. MicroRNAs in non-small cell lung cancer and idiopathic pulmonary fibrosis. J Hum Genet. 2017;62(1):57–65.PubMedCrossRefGoogle Scholar
  81. 81.
    Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: a primer. Am J Pathol. 2007;171(3):728–38.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Reid G. MicroRNAs in mesothelioma: from tumour suppressors and biomarkers to therapeutic targets. J Thorac Dis. 2015;7(6):1031–40.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73(13):2491–509.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Homminga I, Pieters R, Meijerink JP. NKL homeobox genes in leukemia. Leukemia. 2012;26(4):572–81.PubMedCrossRefGoogle Scholar
  85. 85.
    Richards EJ, Zhang G, Li ZP, et al. Long non-coding RNAs (LncRNA) regulated by transforming growth factor (TGF) beta: LncRNA-hit-mediated TGFbeta-induced epithelial to mesenchymal transition in mammary epithelia. J Biol Chem. 2015;290(11):6857–67.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev. 2012;22(1):50–5.PubMedCrossRefGoogle Scholar
  87. 87.
    Sun L, Fang J. Epigenetic regulation of epithelial-mesenchymal transition. Cell Mol Life Sci. 2016;73(23):4493–515.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Mehta A, Dobersch S, Romero-Olmedo AJ, Barreto G. Epigenetics in lung cancer diagnosis and therapy. Cancer Metastasis Rev. 2015;34(2):229–41.PubMedCrossRefGoogle Scholar
  89. 89.
    Di Paolo A, Del Re M, Petrini I, Altavilla G, Danesi R. Recent advances in epigenomics in NSCLC: real-time detection and therapeutic implications. Epigenomics. 2016;8(8):1151–67.PubMedCrossRefGoogle Scholar
  90. 90.
    Sage AP, Martinez VD, Minatel BC, et al. Genomics and epigenetics of malignant mesothelioma. High Throughput. 2018;7:3.CrossRefGoogle Scholar
  91. 91.
    Kettunen E, Hernandez-Vargas H, Cros MP, et al. Asbestos-associated genome-wide DNA methylation changes in lung cancer. Int J Cancer. 2017;141(10):2014–29.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Christensen BC, Marsit CJ, Houseman EA, et al. Differentiation of lung adenocarcinoma, pleural mesothelioma, and nonmalignant pulmonary tissues using DNA methylation profiles. Cancer Res. 2009;69(15):6315–21.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Altomare DA, Menges CW, Xu J, et al. Losses of both products of the Cdkn2a/Arf locus contribute to asbestos-induced mesothelioma development and cooperate to accelerate tumorigenesis. PLoS One. 2011;6(4):e18828.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lamy A, Sesboue R, Bourguignon J, et al. Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: a prospective study in high-risk patients without invasive cancer. Int J Cancer. 2002;100(2):189–93.PubMedCrossRefGoogle Scholar
  95. 95.
    Scruggs AM, Koh HB, Tripathi P, Leeper NJ, White ES, Huang SK. Loss of CDKN2B promotes fibrosis via increased fibroblast differentiation rather than proliferation. Am J Respir Cell Mol Biol. 2018;59(2):200–14.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Oner D, Ghosh M, Moisse M, et al. Global and gene-specific DNA methylation effects of different asbestos fibres on human bronchial epithelial cells. Environ Int. 2018;115:301–11.PubMedCrossRefGoogle Scholar
  97. 97.
    Craighead JE, Mossman BT, Bradley BJ. Comparative studies on the cytotoxicity of amphibole and serpentine asbestos. Environ Health Perspect. 1980;34:37–46.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Lechner JF, Tokiwa T, LaVeck M, et al. Asbestos-associated chromosomal changes in human mesothelial cells. Proc Natl Acad Sci U S A. 1985;82(11):3884–8.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Mossman BT, Lippmann M, Hesterberg TW, Kelsey KT, Barchowsky A, Bonner JC. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J Toxicol Environ Health B Crit Rev. 2011;14(1–4):76–121.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Hei TK, Piao CQ, He ZY, Vannais D, Waldren CA. Chrysotile fiber is a strong mutagen in mammalian cells. Cancer Res. 1992;52(22):6305–9.PubMedGoogle Scholar
  101. 101.
    Pierce JS, Ruestow PS, Finley BL. An updated evaluation of reported no-observed adverse effect levels for chrysotile asbestos for lung cancer and mesothelioma. Crit Rev Toxicol. 2016;46(7):561–86.PubMedCrossRefGoogle Scholar
  102. 102.
    Drummond G, Bevan R, Harrison P. A comparison of the results from intra-pleural and intra-peritoneal studies with those from inhalation and intratracheal tests for the assessment of pulmonary responses to inhalable dusts and fibres. Regul Toxicol Pharmacol. 2016;81:89–105.PubMedCrossRefGoogle Scholar
  103. 103.
    Yanamala N, Kisin ER, Gutkin DW, Shurin MR, Harper M, Shvedova AA. Characterization of pulmonary responses in mice to asbestos/asbestiform fibers using gene expression profiles. J Toxicol Environ Health A. 2018;81(4):60–79.PubMedCrossRefGoogle Scholar
  104. 104.
    Cummins AB, Palmer C, Mossman BT, Taatjes DJ. Persistent localization of activated extracellular signal-regulated kinases (ERK1/2) is epithelial cell-specific in an inhalation model of asbestosis. Am J Pathol. 2003;162(3):713–20.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Manning CB, Sabo-Attwood T, Robledo RF, et al. Targeting the MEK1 cascade in lung epithelium inhibits proliferation and fibrogenesis by asbestos. Am J Respir Cell Mol Biol. 2008;38(5):618–26.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Heintz NH, Janssen YM, Mossman BT. Persistent induction of c-fos and c-Jun expression by asbestos. Proc Natl Acad Sci U S A. 1993;90(8):3299–303.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Quinlan TR, Marsh JP, Janssen YM, et al. Dose-responsive increases in pulmonary fibrosis after inhalation of asbestos. Am J Respir Crit Care Med. 1994;150(1):200–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Shukla A, Vacek P, Mossman BT. Dose-response relationships in expression of biomarkers of cell proliferation in in vitro assays and inhalation experiments. Nonlinearity Biol Toxicol Med. 2004;2(2):117–28.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Janssen YM, Heintz NH, Marsh JP, Borm PJ, Mossman BT. Induction of c-fos and c-Jun proto-oncogenes in target cells of the lung and pleura by carcinogenic fibers. Am J Respir Cell Mol Biol. 1994;11(5):522–30.PubMedCrossRefGoogle Scholar
  110. 110.
    Quinlan TR, BeruBe KA, Marsh JP, et al. Patterns of inflammation, cell proliferation, and related gene expression in lung after inhalation of chrysotile asbestos. Am J Pathol. 1995;147(3):728–39.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Pache JC, Janssen YM, Walsh ES, et al. Increased epidermal growth factor-receptor protein in a human mesothelial cell line in response to long asbestos fibers. Am J Pathol. 1998;152(2):333–40.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Taylor ES, Wylie AG, Mossman BT, Lower SK. Repetitive dissociation from crocidolite asbestos acts as persistent signal for epidermal growth factor receptor. Langmuir. 2013;29(21):6323–30.PubMedCrossRefGoogle Scholar
  113. 113.
    Manning CB, Cummins AB, Jung MW, et al. A mutant epidermal growth factor receptor targeted to lung epithelium inhibits asbestos-induced proliferation and proto-oncogene expression. Cancer Res. 2002;62(15):4169–75.PubMedGoogle Scholar
  114. 114.
    Sequist LV, Martins RG, Spigel D, et al. First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations. J Clin Oncol. 2008;26(15):2442–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Cole RW, Ault JG, Hayden JH, Rieder CL. Crocidolite asbestos fibers undergo size-dependent microtubule-mediated transport after endocytosis in vertebrate lung epithelial cells. Cancer Res. 1991;51(18):4942–7.PubMedGoogle Scholar
  116. 116.
    Ault JG, Cole RW, Jensen CG, Jensen LC, Bachert LA, Rieder CL. Behavior of crocidolite asbestos during mitosis in living vertebrate lung epithelial cells. Cancer Res. 1995;55(4):792–8.PubMedGoogle Scholar
  117. 117.
    MacCorkle RA, Slattery SD, Nash DR, Brinkley BR. Intracellular protein binding to asbestos induces aneuploidy in human lung fibroblasts. Cell Motil Cytoskeleton. 2006;63(10):646–57.PubMedCrossRefGoogle Scholar
  118. 118.
    Kodama Y, Boreiko CJ, Maness SC, Hesterberg TW. Cytotoxic and cytogenetic effects of asbestos on human bronchial epithelial cells in culture. Carcinogenesis. 1993;14(4):691–7.PubMedCrossRefGoogle Scholar
  119. 119.
    Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1666–80.PubMedCrossRefGoogle Scholar
  120. 120.
    Robledo R, Mossman B. Cellular and molecular mechanisms of asbestos-induced fibrosis. J Cell Physiol. 1999;180(2):158–66.PubMedCrossRefGoogle Scholar
  121. 121.
    Peden DB. The role of oxidative stress and innate immunity in O(3) and endotoxin-induced human allergic airway disease. Immunol Rev. 2011;242(1):91–105.PubMedCrossRefGoogle Scholar
  122. 122.
    Conway EM, Pikor LA, Kung SH, et al. Macrophages, inflammation, and lung cancer. Am J Respir Crit Care Med. 2016;193(2):116–30.PubMedCrossRefGoogle Scholar
  123. 123.
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–7.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wu Y, Antony S, Meitzler JL, Doroshow JH. Molecular mechanisms underlying chronic inflammation-associated cancers. Cancer Lett. 2014;345(2):164–73.PubMedCrossRefGoogle Scholar
  125. 125.
    Shukla A, Gulumian M, Hei TK, Kamp D, Rahman Q, Mossman BT. Multiple roles of oxidants in the pathogenesis of asbestos-induced diseases. Free Radic Biol Med. 2003;34(9):1117–29.PubMedCrossRefGoogle Scholar
  126. 126.
    Horsburgh S, Robson-Ansley P, Adams R, Smith C. Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc Immunol Rev. 2015;21:26–41.PubMedGoogle Scholar
  127. 127.
    Vento-Tormo R, Alvarez-Errico D, Garcia-Gomez A, et al. DNA demethylation of inflammasome-associated genes is enhanced in patients with cryopyrin-associated periodic syndromes. J Allergy Clin Immunol. 2017;139(1):202–11 e6.PubMedCrossRefGoogle Scholar
  128. 128.
    Donaldson K, Brown GM, Brown DM, Bolton RE, Davis JM. Inflammation generating potential of long and short fibre amosite asbestos samples. Br J Ind Med. 1989;46(4):271–6.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Davis JM, Cowie HA. The relationship between fibrosis and cancer in experimental animals exposed to asbestos and other fibers. Environ Health Perspect. 1990;88:305–9.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Davis JM, Jones AD. Comparisons of the pathogenicity of long and short fibres of chrysotile asbestos in rats. Br J Exp Pathol. 1988;69(5):717–37.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Sayan M, Mossman BT. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Part Fibre Toxicol. 2016;13(1):51.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Nakayama M. Macrophage recognition of crystals and nanoparticles. Front Immunol. 2018;9:103.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    He Q, Fu Y, Tian D, Yan W. The contrasting roles of inflammasomes in cancer. Am J Cancer Res. 2018;8(4):566–83.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Mortaz E, Henricks PA, Kraneveld AD, Givi ME, Garssen J, Folkerts G. Cigarette smoke induces the release of CXCL-8 from human bronchial epithelial cells via TLRs and induction of the inflammasome. Biochim Biophys Acta. 2011;1812(9):1104–10.PubMedCrossRefGoogle Scholar
  135. 135.
    Kim SJ, Cheresh P, Williams D, et al. Mitochondria-targeted Ogg1 and aconitase-2 prevent oxidant-induced mitochondrial DNA damage in alveolar epithelial cells. J Biol Chem. 2014;289(9):6165–76.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Driscoll KE, Carter JM, Howard BW, Hassenbein D, Janssen YM, Mossman BT. Crocidolite activates NF-kappa B and MIP-2 gene expression in rat alveolar epithelial cells. Role of mitochondrial-derived oxidants. Environ Health Perspect. 1998;106(Suppl 5):1171–4.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Cox LAT Jr. Biological mechanisms of non-linear dose-response for respirable mineral fibers. Toxicol Appl Pharmacol. 2018;361:137–44.PubMedCrossRefGoogle Scholar
  138. 138.
    Marchand F. Uber eigentumliche Pigmentkristalle in den Lungen. Verh Dtsch Ges Pathol. 1906;17:223–8.Google Scholar
  139. 139.
    Stewart MJ, Haddow AC. Demonstration of the peculiar bodies of pulmonary asbestosis (“asbestosis bodies”) in material obtained by lung puncture and in the sputum. J Pathol Bacteriol. 1929;32:172.CrossRefGoogle Scholar
  140. 140.
    Roggli VL. Pathology of human asbestosis: a critical review. Adv Pathol. 1989;2:31–60.Google Scholar
  141. 141.
    Gross P, de Treville RTP, Cralley LJ, Davis JMG. Pulmonary ferruginous bodies. Development in response to filamentous dusts and a method of isolation and concentration. J Occup Environ Med. 1969;11(4):208–9.CrossRefGoogle Scholar
  142. 142.
    Churg AM, Warnock ML. Asbestos and other ferruginous bodies: their formation and clinical significance. Am J Pathol. 1981;102(3):447–56.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Harrison PM, Fischbach FA, Hoy TG, Haggis GH. Ferric oxyhydroxide core of ferritin. Nature. 1967;216(5121):1188–90.PubMedCrossRefGoogle Scholar
  144. 144.
    Pascolo L, Gianoncelli A, Kaulich B, et al. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues. Part Fibre Toxicol. 2011;8(1):7.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Koerten HK, Hazekamp J, Kroon M, Daems WT. Asbestos body formation and iron accumulation in mouse peritoneal granulomas after the introduction of crocidolite asbestos fibers. Am J Pathol. 1990;136(1):141–57.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Morgan A, Holmes A. Concentrations and dimensions of coated and uncoated asbestos fibres in the human lung. Br J Ind Med. 1980;37(1):25–32.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Wagner JC, Berry G, Skidmore JW, Timbrell V. The effects of the inhalation of asbestos in rats. Br J Cancer. 1974;29(3):252–69.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Gandolfi NB, Gualtieri AF, Pollastri S, Tibaldi E, Belpoggi F. Assessment of asbestos body formation by high resolution FEG-SEM after exposure of Sprague-Dawley rats to chrysotile, crocidolite, or erionite. J Hazard Mater. 2016;306:95–104.PubMedCrossRefGoogle Scholar
  149. 149.
    Jaurand MC, Bignon J, Sebastien P, Goni J. Leaching of chrysotile asbestos in human lungs. Correlation with in vitro studies using rabbit alveolar macrophages. Environ Res. 1977;14(2):245–54.PubMedCrossRefGoogle Scholar
  150. 150.
    Roggli VL. Asbestos bodies and non-asbestos ferruginous bodies. Pathology of asbestos-associated diseases. Berlin: Springer; 2014. p. 25–51.CrossRefGoogle Scholar
  151. 151.
    Morgan A, Holmes A. The enigmatic asbestos body: its formation and significance in asbestos-related disease. Environ Res. 1985;38(2):283–92.PubMedCrossRefGoogle Scholar
  152. 152.
    Ghio AJ, Churg A, Roggli VL. Ferruginous bodies: implications in the mechanism of fiber and particle toxicity. Toxicol Pathol. 2004;32(6):643–9.PubMedCrossRefGoogle Scholar
  153. 153.
    Pavlisko EN, Carney JM, Sporn TA, Roggli VL. Mesothelioma pathology. Asbestos and mesothelioma. Berlin: Springer; 2017. p. 131–60.CrossRefGoogle Scholar
  154. 154.
    Attanoos RL, Churg A, Galateau-Salle F, Gibbs AR, Roggli VL. Malignant mesothelioma and its non-asbestos causes. Arch Pathol Lab Med. 2018;142(6):753–60.PubMedCrossRefGoogle Scholar
  155. 155.
    Gualtieri AF. Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers. Toxicol Appl Pharmacol. 2018;361:89–98.PubMedCrossRefGoogle Scholar
  156. 156.
    Bellmann B, Muhle H. Investigation of the biodurability of wollastonite and xonotlite. Environ Health Perspect. 1994;102(Suppl 5):191–5.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Gualtieri AF, Pollastri S, Bursi Gandolfi N, Gualtieri ML. In vitro acellular dissolution of mineral fibres: a comparative study. Sci Rep. 2018;8(1):7071.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Pathology and Laboratory MedicineLarner College of Medicine, University of VermontBurlingtonUSA
  2. 2.Chemical and Earth Sciences DepartmentUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations