Stable Word-Clouds for Visualising Text-Changes Over Time

  • Elisa HeroldEmail author
  • Marcus Pöckelmann
  • Christian Berg
  • Jörg Ritter
  • Mark M. Hall
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11799)


Word-clouds are a useful tool for providing overviews over texts, visualising relevant words. Multiple word-clouds can also be used to visualise changes over time in a text. This requires that the words in the individual word-clouds have stable positions, as otherwise it is very difficult so see what changed between two consecutive word-clouds. Existing approaches have used coordinated positioning algorithms, which do not allow for their use in an online, dynamic context. In this paper we present a fast word-cloud algorithm that uses word orthogonality to determine which words can share the same space in the word-clouds combined with a simple, but fast spiral-based layout algorithm. The evaluation shows that the algorithm achieves its goal of creating series of word-clouds fast enough to enable use in an online, dynamic context.


Text analysis Visualisation Visual analysis Word-clouds Optimisation 


  1. 1.
    Barth, L., Kobourov, S.G., Pupyrev, S.: Experimental comparison of semantic word clouds. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 247–258. Springer, Cham (2014). Scholar
  2. 2.
    Bremer, T., Molitor, P., Pöckelmann, M., Ritter, J., Schütz, S.: Zum einsatz digitaler methoden bei der erstellung und nutzung genetischer editionen gedruckter texte mit verschiedenen fassungen. In: Editio, vol. 29, pp. 29–51. Nutt-Kofoth, R. and Plachta, B. (2015).
  3. 3.
    Castella, Q., Sutton, C.: Word storms: multiples of word clouds for visual comparison of documents. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 665–676. ACM (2014)Google Scholar
  4. 4.
    Collins, C., Viegas, F.B., Wattenberg, M.: Parallel tag clouds to explore and analyze faceted text corpora. In: 2009 IEEE Symposium on Visual Analytics Science and Technology, pp. 91–98. IEEE (2009)Google Scholar
  5. 5.
    Cui, W., Wu, Y., Liu, S., Wei, F., Zhou, M.X., Qu, H.: Context preserving dynamic word cloud visualization. In: 2010 IEEE Pacific Visualization Symposium (PacificVis), pp. 121–128. IEEE (2010)Google Scholar
  6. 6.
    Dodds, P.S., Harris, K.D., Kloumann, I.M., Bliss, C.A., Danforth, C.M.: Temporal patterns of happiness and information in a global social network: hedonometrics and twitter. PloS one 6(12), e26752 (2011)CrossRefGoogle Scholar
  7. 7.
    Feinberg, J.: Wordle. In: Steele, J., Iliinsky, N. (eds.) Beautiful Visualization Looking at Data Through the Eyes of Experts. O’Reilly Media, Newton (2010)Google Scholar
  8. 8.
    Heimerl, F., Lohmann, S., Lange, S., Ertl, T.: Word cloud explorer: text analytics based on word clouds. In: 2014 47th Hawaii International Conference on System Sciences, pp. 1833–1842. IEEE (2014)Google Scholar
  9. 9.
    Hilbert, D.: Über die stetige Abbildung einer Linie auf Flächenstück. Math. Ann. 38, 459–460 (1891)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Jänicke, S., Blumenstein, J., Rücker, M., Zeckzer, D., Scheuermann, G.: Tagpies: comparative visualization of textual data. In: VISIGRAPP (3: IVAPP), pp. 40–51 (2018)Google Scholar
  11. 11.
    Karp, R.M.: Reducibility among combinatorial problems. Complexity of Computer Computations. The IBM Research Symposia Series, pp. 85–103. Springer, Boston (1972). Scholar
  12. 12.
    Kaser, O., Lemire, D.: Tag-cloud drawing: Algorithms for cloud visualization. arXiv preprint cs/0703109 (2007)Google Scholar
  13. 13.
    Koh, K., Lee, B., Kim, B., Seo, J.: Maniwordle: providing flexible control over wordle. IEEE Trans. Vis. Comput. Graph. 16(6), 1190–1197 (2010)CrossRefGoogle Scholar
  14. 14.
    Le, T., Lauw, H.W.: Word clouds with latent variable analysis for visual comparison of documents (2016)Google Scholar
  15. 15.
    Lee, B., Riche, N.H., Karlson, A.K., Carpendale, S.: Sparkclouds: visualizing trends in tag clouds. IEEE Trans. Vis. Comput. Graph. 16(6), 1182–1189 (2010)CrossRefGoogle Scholar
  16. 16.
    Lohmann, S., Heimerl, F., Bopp, F., Burch, M., Ertl, T.: Concentri cloud: word cloud visualization for multiple text documents. In: 2015 19th International Conference on Information Visualisation, pp. 114–120. IEEE (2015)Google Scholar
  17. 17.
    Lohmann, S., Ziegler, J., Tetzlaff, L.: Comparison of tag cloud layouts: task-related performance and visual exploration. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5726, pp. 392–404. Springer, Heidelberg (2009). Scholar
  18. 18.
    Schütz, S., Pöckelmann, M.: Lera - explorative analyse komplexer textvarianten in editionsphilologie und diskursanalyse. In: Digital Humanities im deutschsprachigen Raum 2016 - Konferenzabstracts, pp. 249–253. Leipzig (2016),
  19. 19.
    Seifert, C., Kump, B., Kienreich, W., Granitzer, G., Granitzer, M.: On the beauty and usability of tag clouds. In: 2008 12th International Conference Information Visualisation. pp. 17–25. IEEE (2008)Google Scholar
  20. 20.
    Silva e Silva, L.G., Assunção, R.M.: Cowords: a probabilistic model for multiple word clouds. J. Appl. Stat. 45(15), 2697–2717 (2018)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Strobelt, H., Spicker, M., Stoffel, A., Keim, D., Deussen, O.: Rolled-out wordles: a heuristic method for overlap removal of 2D data representatives. In: Computer Graphics Forum. vol. 31, pp. 1135–1144. Wiley Online Library (2012)Google Scholar
  22. 22.
    Vuillemot, R., Clement, T., Plaisant, C., Kumar, A.: What’s being said near “martha”? exploring name entities in literary text collections. In: 2009 IEEE Symposium on Visual Analytics Science and Technology, pp. 107–114. IEEE (2009)Google Scholar
  23. 23.
    Wang, J., Dent, K.D., North, C.L.: Fisheye word cloud for temporal sentiment exploration. In: CHI 2013 Extended Abstracts on Human Factors in Computing Systems, pp. 1767–1772. ACM (2013)Google Scholar
  24. 24.
    Wanner, F., Jentner, W., Schreck, T., Stoffel, A., Sharalieva, L., Keim, D.A.: Integrated visual analysis of patterns in time series and text data-workflow and application to financial data analysis. Inf. Vis. 15(1), 75–90 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Martin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations