Advertisement

Segmentation of Multi-temporal UV-Induced Fluorescence Images of Historical Violins

  • Piercarlo DondiEmail author
  • Luca Lombardi
  • Marco Malagodi
  • Maurizio Licchelli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11808)

Abstract

Monitoring the state of conservation of a historical violin is a difficult task. Multiple restorations during centuries have created a very complex and stratified surface, hard to correctly interpret. Moreover, the reflectance of the varnishes and the rounded morphology of the violins can easily produce noise, that can be confused for a real alteration. To properly compare multi-temporal images of the same instrument a robust segmentation is needed. To reach this goal we adopted a genetic algorithm to evolve in this direction our previous segmentation method based on HSV histogram quantization. As test set we used images of two important violins held in “Museo del Violino” in Cremona (Italy), periodically acquired during a six-month period, and images of a sample violin altered in laboratory to reproduce a long-term evolution.

Keywords

Segmentation Genetic algorithm UV induced fluorescence Cultural Heritage Historical violins 

Notes

Acknowledgements

We would like to thank “Fondazione Museo del Violino Antonio Stradivari”, “Friends of Stradivari” and “Cultural District of Violin Making of Cremona” for their collaboration.

References

  1. 1.
    Bradley, S.: Preventive conservation research and practice at the British museum. J. Am. Inst. Conserv. 44(3), 159–173 (2005).  https://doi.org/10.1179/019713605806082248CrossRefGoogle Scholar
  2. 2.
    Brandmair, B., Greiner, P.S.: Stradivari varnish: scientific analysis of his finishing technique on selected instruments. Serving Audio (2010)Google Scholar
  3. 3.
    Bruni, S., Guglielmi, V.: Identification of archaeological triterpenic resins by the non-separative techniques FTIR and 13C NMR: the case of Pistacia resin (mastic) in comparison with frankincense. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 121, 613–622 (2014).  https://doi.org/10.1016/j.saa.2013.10.098CrossRefGoogle Scholar
  4. 4.
    Cerra, D., Plank, S., Lysandrou, V., Tian, J.: Cultural heritage sites in danger–towards automatic damage detection from space. Remote Sens. 8(9), 781 (2016).  https://doi.org/10.3390/rs8090781CrossRefGoogle Scholar
  5. 5.
    Chouhan, S.S., Kaul, A., Singh, U.P.: Soft computing approaches for image segmentation: a survey. Multimedia Tools Appl. 77(21), 28483–28537 (2018).  https://doi.org/10.1007/s11042-018-6005-6CrossRefGoogle Scholar
  6. 6.
    Deborah, H., Richard, N., Hardeberg, J.Y.: Hyperspectral crack detection in paintings. In: 2015 Colour and Visual Computing Symposium (CVCS), pp. 1–6, August 2015.  https://doi.org/10.1109/CVCS.2015.7274902
  7. 7.
    Dondi, P., Lombardi, L., Invernizzi, C., Rovetta, T., Malagodi, M., Licchelli, M.: Automatic analysis of UV-induced fluorescence imagery of historical violins. J. Comput. Cult. Herit. 10(2), 12:1–12:13 (2017).  https://doi.org/10.1145/3051472CrossRefGoogle Scholar
  8. 8.
    Dondi, P., Lombardi, L., Malagodi, M., Licchelli, M.: Automatic identification of varnish wear on historical instruments: the case of Antonio Stradivari violins. J. Cult. Herit. 22, 968–973 (2016).  https://doi.org/10.1016/j.culher.2016.05.010CrossRefGoogle Scholar
  9. 9.
    Dondi, P., Lombardi, L., Malagodi, M., Licchelli, M., Rovetta, T., Invernizzi, C.: An interactive tool for speed up the analysis of UV images of Stradivari violins. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 103–110. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23222-5_13CrossRefGoogle Scholar
  10. 10.
    Fichera, G.V., et al.: Innovative monitoring plan for the preventive conservation of historical musical instruments. Stud. Conserv. 63(Suppl. 1), 351–354 (2018).  https://doi.org/10.1080/00393630.2018.1499853CrossRefGoogle Scholar
  11. 11.
    Fiocco, G., et al.: Approaches for detecting madder lake in multi-layered coating systems of historical bowed string instruments. Coatings 8(5) (2018).  https://doi.org/10.3390/coatings8050171CrossRefGoogle Scholar
  12. 12.
    Janssens, K., Van Grieken, R.: Non-Destructive Micro Analysis of Cultural Heritage Materials, vol. 42. Elsevier, Amsterdam (2004)Google Scholar
  13. 13.
    Jmal, M., Souidene, W., Attia, R.: Efficient cultural heritage image restoration with nonuniform illumination enhancement. J. Electron. Imaging 26(1), 1–15 (2017).  https://doi.org/10.1117/1.JEI.26.1.011020CrossRefGoogle Scholar
  14. 14.
    Paulinas, M., Ušinskas, A.: A survey of genetic algorithms applications for image enhancement and segmentation. Inf. Technol. Control 36(3), 278–284 (2007) Google Scholar
  15. 15.
    Pizurica, A., et al.: Digital image processing of the Ghent Altarpiece: supporting the painting’s study and conservation treatment. IEEE Signal Process. Mag. 32(4), 112–122 (2015).  https://doi.org/10.1109/MSP.2015.2411753CrossRefGoogle Scholar
  16. 16.
    Polak, A., et al.: Hyperspectral imaging combined with data classification techniques as an aid for artwork authentication. J. Cultural Herit. 26, 1–11 (2017).  https://doi.org/10.1016/j.culher.2017.01.013CrossRefGoogle Scholar
  17. 17.
    Puzicha, J., Hofmann, T., Buhmann, J.M.: Non-parametric similarity measures for unsupervised texture segmentation and image retrieval. In: Proceedings of 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 267–272, June 1997.  https://doi.org/10.1109/CVPR.1997.609331
  18. 18.
    Rovetta, T., et al.: The case of Antonio Stradivari 1718 ex-San Lorenzo violin: history, restorations and conservation perspectives. J. Archaeol. Sci. Rep. 23, 443–450 (2019).  https://doi.org/10.1016/j.jasrep.2018.11.010CrossRefGoogle Scholar
  19. 19.
    Rovetta, T., Invernizzi, C., Licchelli, M., Cacciatori, F., Malagodi, M.: The elemental composition of Stradivari’s musical instruments: new results through non-invasive EDXRF analysis. X-Ray Spectrom. 47(2), 159–170 (2018).  https://doi.org/10.1002/xrs.2825CrossRefGoogle Scholar
  20. 20.
    Stanco, F., Battiato, S., Gallo, G.: Digital Imaging for Cultural Heritage Preservation: Analysis, Restoration, and Reconstruction of Ancient Artworks. CRC Press, Boca Raton (2011)Google Scholar
  21. 21.
    Stuart, B.H.: Analytical Techniques in Materials Conservation. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  22. 22.
    Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K.: ArtGAN: artwork synthesis with conditional categorical GANs. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3760–3764, September 2017.  https://doi.org/10.1109/ICIP.2017.8296985

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CISRiC - Arvedi Laboratory of Non-Invasive DiagnosticsUniversity of PaviaCremonaItaly
  2. 2.Department of Civil Engineering and ArchitectureUniversity of PaviaPaviaItaly
  3. 3.Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
  4. 4.Department of Musicology and Cultural HeritageUniversity of PaviaCremonaItaly
  5. 5.Department of ChemistryUniversity of PaviaPaviaItaly

Personalised recommendations