Advertisement

Isoquinoline Alkaloids and Chemotaxonomy

  • Anderson R. dos SantosEmail author
  • Nelissa P. Vaz
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 24)

Abstract

The isoquinoline alkaloids are a class of secondary metabolites classified into different groups, being the aporphinoids the most representative class. They are considered the second-largest class of alkaloids in terms of structural diversity staying behind only of indole alkaloids. The aporphines could be found in the most diverse families of the plant kingdom. Isoquinolines alkaloids have aroused great interest in chemists and pharmacists due to its wide spectrum of biological activities: highlighting dopaminergic and serotonergic, vasodilator, antiplatelet agents, antimicrobial, antiviral, and cytotoxic. Different methods are applied to improve the comprehension about the metabolic pathways of isoquinoline alkaloids biosynthesis. Those approaches contribute to chemotaxonomy: one of the most useful plant classification systems that currently exist. This class of secondary metabolites has been widely reported as chemotaxonomic markers. These technological advances concerning new methodologies and tools are used nowadays to study these chemotaxonomic relationships: since screening the chemical composition of plants extracts through analytical techniques, to the analysis of chemodiversity and chemosystematics allied through reported data in literature. In this chapter, we present the main metabolic pathways involving biosynthesis of some groups of isoquinoline alkaloids, their occurrence in different vegetable families, and a few methods used in the studies of chemotaxonomic relations.

Keywords

Isoquinoline alkaloids Biosynthesis Occurrence Chemotaxonomy Biodiversity 

References

  1. Ahamad J, Naquvi KJ, Ali M, Mir SR (2014) New isoquinoline alkaloids from the stem bark of Berberis aristata. Indian J Chem 53B:1237–1241Google Scholar
  2. Albarracin LT, Delgado WA, Cuca LE, Ávila MC (2017) Chemical constituents of the bark of Endlicheria oreocola (Lauraceae) from Colombia. Biochem Syst Ecol 74:60–62CrossRefGoogle Scholar
  3. Alves T, Zani C (1999) New tetrahydroisoquinolinones from Hyeronima oblonga (Euphorbiaceae). Tetrahedron Lett 40:205–208CrossRefGoogle Scholar
  4. An TY, Huang RQ, Yang Z, Zhang DK, Li GR, Yao YC, Gao J (2001) Alkaloids from Cynanchum komarovii with inhibitory activity against the tobacco mosaic virus. Phytochemistry 58:1267–1269PubMedCrossRefGoogle Scholar
  5. Barrera EDC, Suárez LEC (2009) Aporphine alkaloids from leaves of Ocotea macrophylla (Kunth)(Lauraceae) from Colombia. Biochem Syst Ecol 37:522–524CrossRefGoogle Scholar
  6. Bringmann G, Messer K, Wolf K, Mühlbacher J, Grüne M, Brun R, Louis AM (2002) Dioncophylline E from Dioncophyllum thollonii, the first 7,3′-coupled dioncophyllaceous naphthylisoquinoline alkaloid. Phytochemistry 60:389–397PubMedCrossRefGoogle Scholar
  7. Bringmann G, Dreyer M, Faber JH, Dalsgaard PW, Stærk D, Jaroszewski JW, Ndangalasi H, Mbago F, Brun R, Christensen SB (2004) Ancistrotanzanine C and Related 5, 1′-and 7, 3′-Coupled Naphthylisoquinoline Alkaloids from Ancistrocladus tanzaniensis. J Nat Prod 67:743–748PubMedCrossRefGoogle Scholar
  8. Campos FR, Batista RL, Batista CL, Costa EV, Barison A, dos Santos AG, Pinheiro MLB (2008) Isoquinoline alkaloids from leaves of Annona sericea (Annonaceae). Biochem Syst Ecol 36:804–806CrossRefGoogle Scholar
  9. Charris J, Domı́nguez J, De la Rosa C, Caro C (2000) (−)-Amuronine from the leaves of Croton flavens L. (Euphorbiaceae). Biochem Syst Ecol 28:795–797PubMedCrossRefGoogle Scholar
  10. Chen IS, Wu SJ, Leu YL, Tsai IW, Wu TS (1996) Alkaloids from root bark of Zanthoxylum simulans. Phytochemistry 42:217–219CrossRefGoogle Scholar
  11. Chen IS, Wu SJ, Tsai IL, Wu TS, Pezzuto JM, Lu MC, Chai H, Suh N, Teng CM (1994) Chemical and bioactive constituents from Zanthoxylum simulans. J Nat Prod 57:1206–1211PubMedCrossRefGoogle Scholar
  12. Chen J, Gao K, Liu T, Zhao H, Wang J, Wu H, Liu B, Wang W (2013) Aporphine alkaloids: a kind of alkaloids’ extract source, chemical constitution and pharmacological actions in different botany. Asian J Chem 25:10015–10027CrossRefGoogle Scholar
  13. Chiu S, Dobberstein R, Fong H, Farnsworth N (1982) Oxoaporphine alkaloids from Siparuna gilgiana. J Nat Prod 45:229–230CrossRefGoogle Scholar
  14. Costa EV, Marques FA, Pinheiro MLB, Vaz NP, Duarte MCT, Delarmelina C, Braga RM, Maia BHLS (2009a) 7,7-Dimethylaporphine alkaloids from the stem of Guatteriopsis friesiana. J Nat Prod 72:1516–1519PubMedCrossRefGoogle Scholar
  15. Costa EV, Pinheiro MLB, Marques FA, Braga RM, Maia BHLS (2009b) First report of alkaloids in the genus Guatteriopsis (Annonaceae). Biochem Syst Ecol 37:43–45CrossRefGoogle Scholar
  16. Cronquist A (1977) On the taxonomic significance of secondary metabolites in angiosperms. In: Kubitzki K (ed) Flowering plants. Springer, Vienna, pp 179–189CrossRefGoogle Scholar
  17. Da Cunha EVL, Barbosa-Filho JM (2012) Alcaloides derivados do núcleo isoquinolínico. In: Yunes RA, Cechinel-Filho V (Org.) Química de produtos naturais, novos fármacos e a moderna farmacognosia. Editora Univali, pp 291–330Google Scholar
  18. De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173PubMedCrossRefGoogle Scholar
  19. De Wet H, Van Heerden FR, Van Wyk BE (2011) Alkaloidal variation in Cissampelos capensis (Menispermaceae). Molecules 16:3001–3009PubMedPubMedCentralCrossRefGoogle Scholar
  20. Deng X, Zhu L, Fang T, Vimolmangkang S, Yang D, Ogutu C, Liu Y, Han Y (2016) Analysis of isoquinoline alkaloid composition and wound-induced variation in Nelumbo using HPLC-MS/MS. J Agr Food Chem 64:1130–1136CrossRefGoogle Scholar
  21. Dewick PM (2002) Medicinal natural products: a biosynthetic approach. Wiley, New YorkGoogle Scholar
  22. dos Santos AR, Pires C, Marques FA, Lobão AQ, Maia BHL (2017) Isoquinoline alkaloids isolated from three Guatteria species. Biochem Syst Ecol 73:1–2CrossRefGoogle Scholar
  23. Dute P, Chalandre MC, Cabalion P, Bruneton J (1988) (+)-auroramine and (+)-maroumine, new seco-bis-benzyl-isoquinoline dimers from Gyrocarpus americanus. Phytochemistry 27:655–657CrossRefGoogle Scholar
  24. El Antri A, Messouri I, Bouktaib M, El Alami R, Bolte M, El Bali B, Lachkar M (2004) Isolation and X-ray crystal structure of a new isoquinoline-N-oxide alkaloid from Calycotome villosa subsp. intermedia. Fitoterapia 75:774–778PubMedCrossRefGoogle Scholar
  25. El-Shazly A, Sarg T, Ateya A, Aziz EA, El-Dahmy S, Witte L, Wink M (1996) Pyrrolizidine and tetrahydroisoquinoline alkaloids from Echium humile. Phytochemistry 42:225–230CrossRefGoogle Scholar
  26. Erkens RH, Maas PJ (2008) The Guatteria group disentangled: sinking Guatteriopsis, Guatteriella, and Heteropetalum into Guatteria. Rodriguésia 59:401–406CrossRefGoogle Scholar
  27. Ernst M, Silva DB, Silva RR, Vêncio RZN, Lopes NP (2014) Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing. Nat Prod Rep 31:784–806PubMedCrossRefGoogle Scholar
  28. Fischer D, Gonçalves M, Oliveira F, Alvarenga M (1999) Constituents from Siparuna apiosyce. Fitoterapia 70:322–323CrossRefGoogle Scholar
  29. Hagel JM, Mandal R, Han B, Han J, Dinsmore DR, Borchers CH, Wishart DS, Facchini PJ (2015) Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC Plant Biol 15:220PubMedPubMedCentralCrossRefGoogle Scholar
  30. Huang Y, Zeng Q, Fu JJ, Kou ZJ, Chang RJ, Jin HZ, Zhang WD (2011) Chemical constituents from Tsoongiodendron odorum Chun. Biochem Syst Ecol 39:209–212CrossRefGoogle Scholar
  31. Ikezawa N, Iwasa K, Sato F (2008) Molecular cloning and characterization of CYP80G2, a cytochrome P450 that catalyzes an intramolecular C-C phenol coupling of (S)-reticuline in magnoflorine biosynthesis, from cultured Coptis japonica cells. J Biol Chem 283:8810–8821PubMedCrossRefPubMedCentralGoogle Scholar
  32. Iqbal E, Lim LBL, Salim KA, Faizi S, Ahmed A, Mohamed AJ (2018) Isolation and characterization of aristolactam alkaloids from the stem bark of Goniothalamus velutinus (Airy Shaw) and their biological activities. JKSUS 30:41–48Google Scholar
  33. Itoh A, Tanahashi T, Nagakura N (1995) Five tetrahydroisoquinoline-monoterpene glucosides and a tetrahydro-β-carboline-monoterpene glucoside from Alangium lamarckii. J Nat Prod 58:1228–1239CrossRefGoogle Scholar
  34. Jarraya RM, Bouaziz A, Hamdi B, Salah A, Damak M (2008) N-methylisosalsoline from Hammada scoparia. Acta Crystallogr E 64:o1714CrossRefGoogle Scholar
  35. Jenis J, Nugroho AE, Hashimoto A, Deguchi J, Hirasawa Y, Wong CP, Kaneda T, Shirota O, Morita H (2015) A new benzylisoquinoline alkaloid from Leontice altaica. Nat Prod Commun 10:291–292PubMedPubMedCentralGoogle Scholar
  36. Kaya GI, Unver N, Gozler B, Bastida J (2004) (−)-Capnoidine and (+)-bulbocapnine from an Amaryllidaceae species, Galanthus nivalis subsp. cilicicus. Biochem Syst Ecol 32:1059–1062CrossRefGoogle Scholar
  37. Kumar V (2017) Study of chemotaxonomy: meaning, stages and significance. Universal Research Reports 4:6–8Google Scholar
  38. Ladino OJP, Suárez LEC (2010) Isoquinoline alkaloids of Zanthoxylum quinduense (Rutaceae). Biochem Syst Ecol 38:853–856CrossRefGoogle Scholar
  39. Li H, Kao C, Tsai C, Li W, Chen C (2017) Isoquinoline Alkaloids from Michelia fuscata. Chem Nat Compd 53:504–507CrossRefGoogle Scholar
  40. Li YH, Li HM, Li Y, He J, Deng X, Peng LY, Gao LH, Zhao QS, Li RT, Wu XD (2014) New alkaloids sinomacutines A-E, and cephalonine-2-O-β-d-glucopyranoside from rhizomes of Sinomenium acutum. Tetrahedron 70:8893–8899CrossRefGoogle Scholar
  41. Lima N, Santos V, La Porta FA (2018) Quimiodiversidade, Bioatividade e Quimiossistemática do gênero Inga (FABACEAE): Uma breve Revisão. Rev Virtual Quim 10:459–473CrossRefGoogle Scholar
  42. Lin WH, Fu HZ, Hano Y, Nomura T (1997) Alkaloids from the roots of Aristolochia triangularis (I). J Chinese Pharm Sci 6:8–13Google Scholar
  43. Liscombe DK, Facchini PJ (2008) Evolutionary and cellular webs in benzylisoquinoline alkaloid biosynthesis. Curr Opin Biotech 19:173–180PubMedCrossRefGoogle Scholar
  44. Liscombe DK, MacLeod BP, Loukanina N, Nandi OI, Facchini PJ (2005) Erratum to “Evidence for the monophyletic evolution of benzylisoquinoline alkaloid biosynthesis in angiosperms”. Phytochemistry 66:2500–2520CrossRefGoogle Scholar
  45. López JA, Lin FT, Duah FK, Aly Y, Schiff PL (1988) Mollinedine, a new alkaloid from Mollinedia costaricensis. J Nat Prod 51:754–759PubMedCrossRefGoogle Scholar
  46. Lucio ASSC, da Silva Almeida JRG, da-Cunha EVL, Tavares JF, Barbosa Filho JM (2015) Alkaloids of the Annonaceae: occurence and a compilation of their biological activities. In: The alkaloids: chemistry and biology, vol 74, pp 233–409Google Scholar
  47. Marti G, Eparvier V, Morleo B, Ven JL, Apel C, Bodo B, Amand S, Dumontet V, Lozach O, Meijer L (2013) Natural aristolactams and aporphine alkaloids as inhibitors of CDK1/Cyclin B and DYRK1A. Molecules 18:3018–3027PubMedPubMedCentralCrossRefGoogle Scholar
  48. Martin F, Grkovic T, Sykes ML, Shelper T, Avery VM, Camp D, Quinn RJ, Davis RA (2011) Alkaloids from the Chinese vine Gnetum montanum. J Nat Prod 74:2425–2430PubMedCrossRefGoogle Scholar
  49. Menezes LR, Costa CO, Rodrigues ACBC, Santo FRE, Nepel A, Dutra LM, Silva F, Soares MB, Barison A, Costa EV (2016) Cytotoxic alkaloids from the stem of Xylopia laevigata. Molecules 21:890PubMedCentralCrossRefPubMedGoogle Scholar
  50. Misra A, Srivastava S (2016) Chemotaxonomy: An approach for conservation & exploration of industrially potential medicinal plants. J Pharmacogn Nat Prod 2:4.  https://doi.org/10.4172/2472-0992.1000e108CrossRefGoogle Scholar
  51. Mulholland DA, Crouch N, Decker B, Smith MT (2002) The isolation of the Amaryllidaceae alkaloid crinamine from Dioscorea dregeana (Dioscoreaceae). Biochem Syst Ecol 2:183–185CrossRefGoogle Scholar
  52. Nomura T, Quesada AL, Kutchan TM (2008) The new β-d-glucosidase in terpenoid-isoquinoline alkaloid biosynthesis in Psychotria ipecacuanha. J Biol Chem 283:34650–34659PubMedPubMedCentralCrossRefGoogle Scholar
  53. Pang SQ, Wang GQ, Lin JS, Diao Y, Xu RA (2014) Cytotoxic activity of the alkaloids from Broussonetia papyrifera fruits. Pharm Biol 52:1315–1319PubMedCrossRefGoogle Scholar
  54. Popović M, Djurković R, Gašić O, Pal B, Dutschewska H, Kuzmanov B (1992) Chemical and cytological investigation of Thalictrum minus from Vojvodina Region. Biochem Syst Ecol 20:255–258CrossRefGoogle Scholar
  55. Qin XD, Yang S, Zhao Y, Gao Y, Ren FC, Zhang DY, Wang F (2017) A new Aporphine alkaloid from Aconitum carmichaelii. Chem Nat Compd 53:501–503CrossRefGoogle Scholar
  56. Rastrelli L, Capasso A, Pizza C, De Tommasi N, Sorrentino L (1997) New protopine and benzyltetrahydroprotoberberine alkaloids from Aristolochia constricta and their activity on isolated guinea-pig ileum. J Nat Prod 60:1065–1069PubMedCrossRefGoogle Scholar
  57. Riley-Saldaña CA, del Rocío Cruz-Ortega M, Vázquez MM, De-la-Cruz-Chacón I, Castro-Moreno M, González-Esquinca AR (2017) Acetogenins and alkaloids during the initial development of Annona muricata L. (Annonaceae). Z Naturforsch C 72:497–506PubMedCrossRefGoogle Scholar
  58. Santos CAM, Reichert CL, Santos TG (2017) Alcaloides isoquinolínicos. In: Simões CMO (ed) Farmacognosia do produto ao medicamento. Artmed, pp 331–347Google Scholar
  59. Sauvain M, Moretti C, Bravo JA, Callapa J, Muñoz V, Ruiz E, Richard B, Le Men-Olivier L (1996) Antimalarial activity of alkaloids from Pogonopus tubulosus. Phytother Res 10:198–201CrossRefGoogle Scholar
  60. Schimming T, Jenett-Siems K, Siems K, Witte L, Gupta MP, Eich E (2000) Iseluxine: a novel isoquinolinone alkaloid from Iseia luxurians. Z Naturforsch C 55:1023–1025CrossRefGoogle Scholar
  61. Schnetzler BN, Teixeira SP, Marinho CR (2017) Trichomes that secrete substances of a mixed nature in the vegetative and reproductive organs of some species of Moraceae. Acta Bot Bras 31:392–402CrossRefGoogle Scholar
  62. Shamma M, Guinaudeau H (1984) Biogenetic pathways for the aporphinoid alkaloids. Tetrahedron 40:4795–4822CrossRefGoogle Scholar
  63. Silva F, Silva Filho FA, Lima BR, Almeida RA, Soares ER, Koolen HH, Souza AD, Pinheiro ML (2016) Chemotaxonomy of the Amazonian Unonopsis species based on leaf alkaloid fingerprint direct infusion ESI-MS and chemometric analysis. J Brazil Chem Soc 27:599–604Google Scholar
  64. Singh A, Bajpai V, Kumar S, Rawat AKS, Kumar B (2017) Analysis of isoquinoline alkaloids from Mahonia leschenaultia and Mahonia napaulensis roots using UHPLC-Orbitrap-MSn and UHPLC-QqQLIT-MS/MS. J Pharm Anal 7:77–86PubMedCrossRefGoogle Scholar
  65. Singh R (2016) Chemotaxonomy: a tool for plant classification. J Med Plants 4:90–93Google Scholar
  66. Stanstrup J, Schmidt JS, Rasmussen HB, Mølgaard P, Guzmán A, Staerk D (2010) Bisbenzylisoquinoline alkaloids as markers of Atherospermataceae: Tetrandrine and fangchinoline from Laureliopsis philippiana. Biochem Syst Ecol 38:450–453CrossRefGoogle Scholar
  67. Stevigny C, Bailly C, Quetin-Leclercq J (2005) Cytotoxic and antitumor potentialities of aporphinoid alkaloids. Curr Med Chem Anticancer Agents 5(2):173–182PubMedCrossRefGoogle Scholar
  68. Suau R, Cabezudo B, Rico R, López-Romero JM, Nájera F (2002) Alkaloids from Fumaria sepium and Fumaria agraria. Biochem Syst Ecol 30:263–265CrossRefGoogle Scholar
  69. Ünsal Ç, Eroğlu E, Şerbetçi T, Mat A, Sarıyar G (2008) Alkaloids of Papaver clavatum and P. stylatum. Biochem Syst Ecol 5:497–499CrossRefGoogle Scholar
  70. Urzua A, Cassels BK (1978) Alkaloid chemosystematics, chemotaxonomy and biogenesis in the Atherospermataceae. Lloydia 41:98–113Google Scholar
  71. Urzua A, Espinoza J, Olguin A, Santander R (2013) Phenolic aristolactams from leaves and stems of Aristolochia chilensis. Bol Latinoam Caribe de Plantas Med Aromát 12:537–542Google Scholar
  72. Wink M (2013) Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot 89:164–175CrossRefGoogle Scholar
  73. Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2:251–286PubMedPubMedCentralCrossRefGoogle Scholar
  74. Wink M (2018) Quinolizidine and pyrrolizidine alkaloid chemical ecology—a mini-review on their similarities and differences. J Chem Ecol.  https://doi.org/10.1007/s10886-018-1005-6CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yang GM, Sun J, Pan Y, Zhang JL, Xiao M, Zhu MS (2018) Isolation and identification of a tribenzylisoquinoline alkaloid from Nelumbo nucifera Gaertn, a novel potential smooth muscle relaxant. Fitoterapia 124:58–65PubMedCrossRefPubMedCentralGoogle Scholar
  76. Zhang A, Zhang Y, Branfman AR, Baldessarini RJ, Neumeyer JL (2007) Advances in development of dopaminergic aporphinoids. J Med Chem 50:171–181PubMedCrossRefPubMedCentralGoogle Scholar
  77. Zhang L, Rao G (2009) Aporphine, protoberberine and morphine alkaloids from the tubers of Stephania yunnanensis. Biochem Syst Ecol 37:622–625CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Laboratory of Natural Products and Chemical EcologyFederal University of ParanáCuritibaBrazil

Personalised recommendations