Chemotaxonomic Significance of Alkaloids in Plants

  • Ram SinghEmail author
  • Poonam
  • Geetanjali
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 24)


The classification of plants on the basis of their chemical constituents is a powerful weapon for plant taxonomists. The chemotaxonomic classification, when applied with proper care and phytochemical inputs, is more useful than morphological- and anatomical-based classifications. However, chemotaxonomy also suffers from some noticeable disadvantages like the presence of common compounds in many plants. These compounds have small taxonomic values. Alkaloids are nitrogen-containing secondary metabolites present in plant kingdom. These alkaloids play significant role in chemotaxonomic classification of plants. The present chapter discusses the distribution of alkaloids in plants and their applications in plant taxonomy.


Plants Taxonomy Chemotaxonomy Secondary metabolites Alkaloids 



The author Poonam is thankful to Delhi Technological University for financial support.


  1. Acamovic T, Stewart CS, Pennycott TW (2004) Poisonous plants and related toxins. CABI, Wallingford, UKCrossRefGoogle Scholar
  2. Akramov ST, Kiyamitdinova F, Yunusov SY (1965) Study of Rindera and Lindelofia. Dokl Akad Nauk Uzb 22:35–38Google Scholar
  3. Aniszewski T (2007) Alkaloids-secrets of life: alkaloids chemistry, biological significance, applications and ecological role. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  4. Berkov S, Zayed R, Doncheva T (2006) Alkaloid patterns in some varieties of Datura stramonium. Fitoterapia 77:179–182PubMedCrossRefGoogle Scholar
  5. Berkova S, Zayed R (2004) Comparison of tropane alkaloid spectra between Datura innoxia grown in Egypt and Bulgaria. Z Naturforsch C 59:184–186CrossRefGoogle Scholar
  6. Bindu S, Rameshkumar KB, Kumar B, Singh A, Anilkumar C (2014) Distribution of reserpine in Rauvolfia species from India—HPTLC and LC–MS studies. Ind Crops Prod 62:430–436CrossRefGoogle Scholar
  7. Bringmann G, Günther C, Mühlbacher J, Gunathilake MLP, Wickramasinghe A (2000) Tropane alkaloids from Erythroxylum zeylanicum OE Schulz (Erythroxylaceae). Phytochemistry 53:409–416PubMedCrossRefGoogle Scholar
  8. Broun P, Liu Y, Queen E, Schwarz Y, Abenes ML, Leibman M (2006) Importance of transcription factors in the regulation of plant secondary metabolism and their relevance to the control of terpenoid accumulation. Phytochem Rev 5:27–38CrossRefGoogle Scholar
  9. Castells E, Mulder PP, Pérez-Trujillo M (2014) Diversity of pyrrolizidine alkaloids in native and invasive Senecio pterophorus (Asteraceae): implications for toxicity. Phytochemistry 108:137–146PubMedCrossRefPubMedCentralGoogle Scholar
  10. Costa TDSA, Vieira RF, Bizzo HR, Silveira D, Gimenes MA (2012) Secondary metabolites. In: Dhanarasu S (ed) Chromatography and its applications. InTech Publishers, Croatia, pp 131–164Google Scholar
  11. Cromwell BT (1956) The separation, micro-estimation and distribution of the alkaloids of hemlock (Conium maculatum L.). Biochem J 64:259–266PubMedPubMedCentralGoogle Scholar
  12. Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). Biochem Mol Biol Plants 24:1250–1319Google Scholar
  13. Dewick PM (2002) Medicinal natural products. A biosynthetic approach, 2nd edn. Wiley, Chichester, New YorkGoogle Scholar
  14. Dring JV, Nash RJ, Roberts MF, Reynolds T (1984) Hemlock alkaloids in Aloes. Occurrence and distribution of γ-coniceine. Planta Med 50:442–443PubMedCrossRefPubMedCentralGoogle Scholar
  15. El-Shazly A, Wink M (2014) Diversity of pyrrolizidine alkaloids in the Boraginaceae structures, distribution, and biological properties. Diversity 6:188–282CrossRefGoogle Scholar
  16. Endress ME, Bruyns PV (2000) A revised classification of the Apocynaceae s.l. Bot Rev 66:1–56CrossRefGoogle Scholar
  17. Endress ME, Liede-Schumann S, Meve U (2014) An updated classification for Apocynaceae. Phytotaxa 159:175–194CrossRefGoogle Scholar
  18. Gardner DR, Thorne MS, Molyneux RJ, Pfister JA, Seawright AA (2006) Pyrrolizidine alkaloids in Senecio madagascariensis from Australia and Hawaii and assessment of possible livestock poisoning. Biochem Syst Ecol 34:736–744CrossRefGoogle Scholar
  19. Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53(6):623–637PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hampel CA, Hawley GG (1976) Glossary of chemical terms. Nostrand Reinhold Company, New YorkGoogle Scholar
  21. Hartmann T (1999) Chemical ecology of pyrrolizidine alkaloids. Planta 207:483–495CrossRefGoogle Scholar
  22. Hartmann T, Ober D (2000) Biosynthesis and metabolism of pyrrolizidine alkaloids in plants and specialized insect herbivores. Springer-Verlag, Berlin, pp 207–243Google Scholar
  23. Hartmann T, Witte L (1995) Pyrrolizidine alkaloids: chemical, biological and chemoecological aspects. Alkaloids Chem Biol Perspect 9:155–233CrossRefGoogle Scholar
  24. Hegnauer R (1988) Biochemistry, distribution and taxonomic relevance of higher plant alkaloids. Phytochemistry 27:2423–2427CrossRefGoogle Scholar
  25. Hesse M (1981) Alkaloid chemistry. Wiley, New YorkGoogle Scholar
  26. Hotti H, Rischer H (1962) The killer of Socrates: coniine and related alkaloids in the plant kingdom. Molecules 22. Scholar
  27. Hotti H, Gopalacharyulu P, Seppänen-Laakso T, Rischer H (2017) Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia. PLoS ONE 12:e0171078PubMedPubMedCentralCrossRefGoogle Scholar
  28. Huizing HJ, Gadella TW, Kliphuis E (1982) Chemotaxonomical investigations of the Symphytum officinale polyploid complex and S. asperum (Boraginaceae): the pyrrolizidine alkaloids. Plant Syst Evol 140:279–292CrossRefGoogle Scholar
  29. Itoh A, Kumashiro T, Yamaguchi M, Nagakura N, Mizushina Y, Nishi T, Tanahashi T (2005) Indole alkaloids and other constituents of Rauwolfia serpentina. J Nat Prod 68:848–852PubMedCrossRefGoogle Scholar
  30. Jakubke H-D, Jeschkeit H, Eagleson M (1994) Concise encyclopedia chemistry. Walter de Gruyter, Berlin, New YorkGoogle Scholar
  31. Jing H, Liu J, Liu H, Xin H (2014) Histochemical investigation and kinds of alkaloids in leaves of different developmental stages in Thymus quinquecostatus. Sci World J 2014:1–6CrossRefGoogle Scholar
  32. Jirschitzka J, Schmidt GW, Reichelt M, Schneider B, Gershenzon J, D’Auria JC (2012) Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc Nat Acad Sci 109:10304–10309PubMedCrossRefGoogle Scholar
  33. Kaur R, Arora S (2015) Alkaloids-important therapeutic secondary metabolites of plant origin. J Crit Rev 2:1–8Google Scholar
  34. Kelley RB, Seiber JN (1992) Pyrrolizidine alkaloid chemosystematics in Amsinckia. Phytochemistry 31:2369–2387CrossRefGoogle Scholar
  35. Kliebenstein DJ (2012) Making new molecules—evolution of structures for novel metabolites in plants. Curr Opin Plant Biol 16:1–6CrossRefGoogle Scholar
  36. Kostova N, Christov V, Cholakova M, Nikolova E, Evstatieva L (2006) Pyrrolizidine alkaloids from Bulgarian species of the genus Senecio. J Serb Chem Soc 71:1275–1280CrossRefGoogle Scholar
  37. Kumari R, Rathi B, Rani A, Bhatnagar S (2013) Rauvolfia serpentina L. Benth. ex Kurz.: phytochemical, pharmacological and therapeutic aspects. Int J Pharm Sci Rev Res 23:348–355Google Scholar
  38. Kurucu S, Kartal M, Choudhary MI, Topçu G (2002) Pyrrolizidine alkaloids from Symphytum sylvaticum Boiss. subsp. sepulcrale. (Boiss. & Bal.) Greuter & Burdetvar. sepulcrale and Symphytum aintabicum Hub. -Mor. & Wickens. Turk J Chem 26:195–200Google Scholar
  39. Langel D, Ober D, Pelser PB (2011) The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae. Phytochem Rev 10:3–74CrossRefGoogle Scholar
  40. Liu F, Wan SY, Jiang Z, Li SFY, Ong ES, Osorio JCC (2009) Determination of pyrrolizidine alkaloids in comfrey by liquid chromatography–electrospray ionization mass spectrometry. Talanta 80:916–923PubMedCrossRefPubMedCentralGoogle Scholar
  41. Lounasmaa M, Tamminen T (1993) The tropane alkaloids: chemistry and Biology. In: Cordell GA (ed) The alkaloids, vol 44. Academic Press, New York, pp 1–114Google Scholar
  42. Mandić BM, Simić MR, Vučković IM, Vujisić LV, Novaković MM, Trifunović SS, Milosavljević SM (2013) Pyrrolizidine alkaloids and fatty acids from the endemic plant species Rindera umbellata and the effect of lindelofine-N-oxide on tubulin polymerization. Molecules 18:10694–10706PubMedPubMedCentralCrossRefGoogle Scholar
  43. Matsuura HN, Fett-Neto AG (2015) Plant alkaloids: main features, toxicity, and mechanisms of action. In: Gopalakrishnakone P, Carlini C, Ligabue-Braun R (eds) Plant toxins. Toxinology. Springer, DordrechtGoogle Scholar
  44. McLean EK (1970) The toxic actions of pyrrolizidine (Senecio) alkaloids. Pharmacol Rev 22:429–483PubMedPubMedCentralGoogle Scholar
  45. Mel’kumova ZV, Telzhenetskaya MV, Yunusov SY, Man’ko IV (1974) Refinement of the structure of asperumine. Khim Prir Soed 4:478–480Google Scholar
  46. Misra A, Srivastava S (2016) Chemotaxonomy: an approach for conservation and exploration of industrially potential medicinal plants. J Pharmacogn Nat Prod 2:108CrossRefGoogle Scholar
  47. Mody NV, Henson R, Hedin PA, Kokpol U, Miles DH (1976) Isolation of insect paralysing agent coniine from Sarracenia flava. Experientia 32:829–830CrossRefGoogle Scholar
  48. Mroczek T, Baj S, Chrobok A, Glowniak K (2004) Screening for pyrrolizidine alkaloids in plant materials by electron ionization RP-HPLC-MS with thermabeam interface. Biomed Chromatogr 18:745–751PubMedCrossRefPubMedCentralGoogle Scholar
  49. Nash RJ, Beaumont J, Veitch NC, Reynolds T, Benner J, Hughes CNG, Dring JV, Bennett RN, Dellar JE (1992) Phenylethylamine and piperidine alkaloids in Aloe species. Planta Med 58:84–87PubMedCrossRefPubMedCentralGoogle Scholar
  50. O’Connor SE, Maresh JJ (2006) Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 23:532–547PubMedCrossRefPubMedCentralGoogle Scholar
  51. Okwu DE, Okwu ME (2004) Chemical composition of Spondias mombin Linn plant parts. J Sustain Agric Environ 6:140–147Google Scholar
  52. Panter KE, Bunch TD, Keeler RF, Sisson DV (1988) Radio ultrasound observation of the fetotoxic effects in sheep from ingestion of Conium maculatum (poison-hemlock). J Toxicol Clin Toxicol 26:175–187PubMedCrossRefPubMedCentralGoogle Scholar
  53. Pelletier SW (1983) The nature and definition of an alkaloid. In: Pelletier SW (ed) Alkaloids. Chemical and biological perspectives, vol 1. Wiley, New York, pp 1–31Google Scholar
  54. Pelser PB, de Vos H, Theuring C, Beuerle T, Vrieling K, Hartmann T (2005) Frequent gain and loss of pyrrolizidine alkaloids in the evolution of Senecio section Jacobaea (Asteraceae). Phytochemistry 66:1285–1295PubMedCrossRefPubMedCentralGoogle Scholar
  55. Pigatto AGS, Blanco CC, Mentz LA, Soares GLG (2015) Tropane alkaloids and calystegines as chemotaxonomic markers in the Solanaceae. An Acad Bras Ciênc 87:2139–2149PubMedCrossRefPubMedCentralGoogle Scholar
  56. Plowman T (1981) Amazonian coca. J Ethnopharmacol 3:195–225PubMedCrossRefPubMedCentralGoogle Scholar
  57. Radusiene J, Karpaviciene B, Stanius Z (2012) Effect of external and internal factors on secondary metabolites accumulation in St. John’s worth. Bot Lith 18:101–108CrossRefGoogle Scholar
  58. Reimann A, Nurhayati N, Backenköhler A, Ober D (2004) Repeated evolution of the pyrrolizidine alkaloid–mediated defence system in separate angiosperm lineages. Plant Cell 16:2772–2784PubMedPubMedCentralCrossRefGoogle Scholar
  59. Reynolds T (2005) Hemlock alkaloids from Socrates to poison aloes. Phytochemistry 66:1399–1406PubMedCrossRefPubMedCentralGoogle Scholar
  60. Roberts MF, Wink M (1998) Alkaloids: biochemistry, ecology and medicinal applications. Planum Press, New YorkCrossRefGoogle Scholar
  61. Roeder E (1999) Analysis of pyrrolizidine alkaloids. Curr Org Chem 3:557–576CrossRefGoogle Scholar
  62. Roeder E (2000) Medicinal plants in China containing pyrrolizidine alkaloids. Pharmazie 55:711–726PubMedPubMedCentralGoogle Scholar
  63. Roeder E, Wiedenfeld H (2009) Pyrrolizidine alkaloids in medicinal plants of Mongolia, Nepal and Tibet. Pharmazie 64:699–716PubMedPubMedCentralGoogle Scholar
  64. Roeder E, Wiedenfeld H (2013) Plants containing pyrrolizidine alkaloids used in the Traditional Indian Medicine—including Ayurveda. Pharmazie 68:83–92PubMedPubMedCentralGoogle Scholar
  65. Roitman JN (1988) Longitubine and neolatifoline, new pyrrolizidine alkaloids from Hackelia longituba. Aust J Chem 41:1827–1833CrossRefGoogle Scholar
  66. Said-Al Ahl HAH, Omer EA (2011) Medicinal and aromatic plants production under salt stress. A review. Herba Pol 57:72–87Google Scholar
  67. Singh R (2016) Chemotaxonomy: a tool for plant classification. J Med Plants Stud 4:90–93Google Scholar
  68. Singh R, Geetanjali (2018) Chapter 6: Chemotaxonomy of medicinal plants: possibilities and limitations. In: Mandal SC, Mandal V, Konishi T (eds) Natural products and drug discovery—an integrated approach. Elsevier, pp 119–136Google Scholar
  69. Singh R, Geetanjali, Singh V (2011) Exploring alkaloids as inhibitors of selected enzymes. Asian J Chem 23:483–490Google Scholar
  70. Sivarajan VV (1991) Introduction to the principles of plant taxonomy. Cambridge University PressGoogle Scholar
  71. Smith LW, Culvenor CCJ (1981) Plant sources of hepatotoxic pyrrolizidine alkaloids. J Nat Prod 44:129–152PubMedCrossRefPubMedCentralGoogle Scholar
  72. Soler-Rodríguez F, Martín A, García-Cambero JP, Oropesa AL, Pérez-López M (2006) Datura stramonium poisoning in horses: a risk factor for colic. Vet Rec 158:132–133PubMedCrossRefGoogle Scholar
  73. Souza JSN, Machado LL, Pessoa OD, Braz-Filho R, Overk CR, Yao P, Lemos TL (2005) Pyrrolizidine alkaloids from Heliotropium indicum. J Braz Chem Soc 16:1410–1414CrossRefGoogle Scholar
  74. Taylor WI, Farnsworth NR (eds) (1975) The Catharanthus alkaloids. Botany, chemistry, pharmacology, and clinical use. In: Stearn WT. A synopsis of the genus Catharanthus (Apocynaceae). Marcel Dekker, Inc., New York, pp 9–44Google Scholar
  75. Trigo JR, Leal IR, Matzenbacher NI, Lewinsohn TM (2003) Chemotaxonomic value of pyrrolizidine alkaloids in southern Brazil Senecio (Senecioneae: Asteraceae). Biochem Syst Ecol 31:1011–1022CrossRefGoogle Scholar
  76. Tundis R, Loizzo MR, Bonesi M, Menichini F, Dodaro D, Passalacqua NG, Menichini F (2009) In vitro cytotoxic effects of Senecio stabianus Lacaita (Asteraceae) on human cancer cell lines. Nat Prod Res 23:1707–1718PubMedCrossRefGoogle Scholar
  77. van der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11:607–628CrossRefGoogle Scholar
  78. Verma N, Shukla S (2015) Impact of various factors responsible for fluctuation in plant secondary metabolites. J Appl Res Med Aromat Plants 49:1–9Google Scholar
  79. Wink M (1993) Quinolizidine alkaloids. In: Waterman PG (ed) Methods in plant biochemistry. Academic Press, London, pp 197–239Google Scholar
  80. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19PubMedCrossRefPubMedCentralGoogle Scholar
  81. Wink M (2013) Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot 89:164–175CrossRefGoogle Scholar
  82. Xu Z, Deng M (2017) Identification and control of common weeds. Springer 2547-615Google Scholar
  83. Zhi-Lin Y, Chuan-Chao D, Lian-Qing C (2007) Regulation and accumulation of secondary metabolites in plant-fungus symbiotic system. Afr J Biotechnol 6:1266–1271Google Scholar
  84. Zhu J, Wang M, Wen W, Yu R (2015) Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus. Pharmacog Rev 9:24–28CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Applied ChemistryDelhi Technological UniversityDelhiIndia
  2. 2.Department of Chemistry, Kirori Mal CollegeUniversity of DelhiDelhiIndia

Personalised recommendations