Advertisement

Soft Coral Biodiversity in the Red Sea Family Alcyoniidae: A Biopharmaceutical and Ecological Perspective

  • Erick E. Dokalahy
  • H. R. El-Seedi
  • Mohamed Ali FaragEmail author
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 24)

Abstract

Seas cover over 70% of the Earth surface, and its total global biodiversity is estimated to have some 500 × 106 species of prokaryote and eukaryote organisms. Moreover, the Red Sea with a high percentage of endemic biota is an epicenter for marine biodiversity. Indeed, of the 180 soft coral species identified worldwide, approximately 40% are native to the Red Sea area. Such coral reef ecosystems support enormous biological diversity, including structural and functional complex benthic communities. The marine metabolome is quite complex, and its diversity exceeds that of mammals because the selection and retention of chemical diversity is a critical factor in an organism’s adaptation and fitness and a primary reason for the large number of natural products. Only a few thousand compounds have been reported from the Red Sea of marine origin, and hence, it is believed to have an enormous potential as a provider for new bioactive metabolites. Marine natural products display an extraordinary chemical and pharmacological scope. This could be attributed to their necessity to release secondary metabolites as their own chemical defense tools to survive in extreme environment, to resist their predators, or to provide chemical communication in symbiotic relationships. The growing interest in marine natural products, particularly in the area of anticancer compounds, is attributed to the urgent therapeutic need in this area. The biological and chemical research of the coral reefs has made a remarkable progress as reviewed herein yet the support information of the biodiversity, functions profile and ecological landscapes still to be acquired. This chapter overviews current research in octocoral order: Alcyonacea growing in the Red Sea area with focus on its medicinal potential within its chemical rich niche as well as their ecological functions. The chapter emphasizes also on the potential research areas for the marine natural products that are yet to be investigated.

Keywords

Red sea Alcyoniidae Biopharmaceutical Ecological functions 

Notes

Acknowledgements

M. A. Farag acknowledges the funding received from the Alexander von Humboldt foundation, Germany. H. R. El-Seedi is very grateful to the Swedish Research links grant 2016-05885 (VR for the years 2017–2019) for generous financial support and to Jiangsu University, China for Adjunct Professor fellowship.

References

  1. Abdel-Lateff A, Alarif WM, Ayyad S-EN, Al-Lihaibi SS, Basaif SA (2015) New cytotoxic isoprenoid derivatives from the Red Sea soft coral Sarcophyton glaucum. Nat Prod Res 29(1):24–30.  https://doi.org/10.1080/14786419.2014.952637CrossRefPubMedGoogle Scholar
  2. Abou El Ezz R, Afifi M, Kamal A, Sannad E, Radwan M, Hassanin H, Ahmed S (2015) Isolation and structural elucidation of secondary metabolites obtained from the soft coral Sinularia candidula present in the Egyptian Red Sea. Planta Med 81(16):PM_38.  https://doi.org/10.1055/s-0035-1565415
  3. Abou El-Ezz RF, Ahmed SA, Radwan MM, Ayoub NA, Afifi MS, Ross SA, Szymanski PT, Fahmy H, Khalifa SI (2013) Bioactive cembranoids from the Red Sea soft coral Sarcophyton glaucum. Tetrahedron Lett 54(8):989–992.  https://doi.org/10.1016/j.tetlet.2012.12.037CrossRefGoogle Scholar
  4. Aboutabl E-SA, Azzam SM, Michel CG, Selim NM, Hegazy MF, Ali AHA, Hussein AA (2013) Bioactive terpenoids from the Red Sea soft coral Sinularia polydactyla. Nat Prod Res 27(23):2224–2226.  https://doi.org/10.1080/14786419.2013.805333CrossRefGoogle Scholar
  5. Aboutabl EA, Selim NM, Azzam SM, Michel CG, Hegazy MF, Ali AM, Hussein AA (2017) Polyhydroxy sterols isolated from the Red Sea soft coral Lobophytum crassum and their cytotoxic activity. Nat Prod Commun 12(2):233–235PubMedGoogle Scholar
  6. Ahmed S, Ibrahim A, Arafa AS (2013) Anti-H5N1 virus metabolites from the Red Sea soft coral, Sinularia candidula. Tetrahedron Lett 54(19):2377–2381.  https://doi.org/10.1016/j.tetlet.2013.02.088CrossRefGoogle Scholar
  7. Al-Footy KO, Alarif WM, Asiri F, Aly MM, Ayyad S-EN (2015) Rare pyrane-based cembranoids from the Red Sea soft coral Sarcophyton trocheliophorum as potential antimicrobial-antitumor agents. Med Chem Res 24(2):505–512.  https://doi.org/10.1007/s00044-014-1147-1CrossRefGoogle Scholar
  8. Al-Footy KO, Alarif WM, Zubair MS, Ghandourah MA, Aly MM (2016) Antibacterial and cytotoxic properties of isoprenoids from the Red Sea soft coral, Lobophytum sp. Trop J Pharm Res 15(7):1431–1438.  https://doi.org/10.4314/tjpr.v15i7.11CrossRefGoogle Scholar
  9. Al-Lihaibi SS, Alarif WM, Abdel-Lateff A, Ayyad S-EN, Abdel-Naim AB, El-Senduny FF, Badria FA (2014) Three new cembranoid-type diterpenes from Red Sea soft coral Sarcophyton glaucum: isolation and antiproliferative activity against HepG2 cells. Eur J Med Chem 81:314–322.  https://doi.org/10.1016/j.ejmech.2014.05.016CrossRefPubMedGoogle Scholar
  10. Asaduzzaman M, Pratley JE, An M, Luckett DJ, Lemerle D (2015) Metabolomics differentiation of canola genotypes: toward an understanding of canola allelochemicals. Front Plant Sci 5:765.  https://doi.org/10.3389/fpls.2014.00765CrossRefPubMedPubMedCentralGoogle Scholar
  11. Badria FA, Guirguis AN, El-Naggar WA (1997) Antibacterial and antifungal agents from Egyptian marine organisms. Pharma Biol 35(4):284–287.  https://doi.org/10.1076/phbi.35.4.284.13307CrossRefGoogle Scholar
  12. Berumen ML, Hoey AS, Bass WH, Bouwmeester J, Catania D, Cochran JEM, Khalil MT, Miyake S, Mughal MR, Spaet JL, Saenz-Agudelo P (2013) The status of coral reef ecology research in the Red Sea. Coral Reefs 32(3):737–748.  https://doi.org/10.1007/s00338-013-1055-8CrossRefGoogle Scholar
  13. Changyun W, Haiyan L, Changlun S, Yanan W, Liang L, Huashi G (2008) Chemical defensive substances of soft corals and gorgonians. Acta Ecol Sin 28(5):2320–2328.  https://doi.org/10.1016/S1872-2032(08)60048-7CrossRefGoogle Scholar
  14. Cheng S-Y, Wen Z-H, Chiou S-F, Tsai C-W, Wang S-K, Hsu C-H, Dai C-F, Chiang MY, Wang W-H, Duh C-Y (2009) Ceramide and cerebrosides from the octocoral Sarcophyton ehrenbergi. J Nat Prod 72(3):465–468.  https://doi.org/10.1021/np800362gCrossRefGoogle Scholar
  15. Cheng S-Y, Wang S-K, Duh C-Y (2014) Secocrassumol, a seco-cembranoid from the Dongsha Atoll soft coral Lobophytum crassum. Mar Drugs 12(12):6028–6037.  https://doi.org/10.3390/md12126028CrossRefPubMedPubMedCentralGoogle Scholar
  16. Coll JC, Leone PA, Bowden BF, Carroll AR, König GM, Heaton A, De Nys R, Maida M, Alino PM, Willis RH, Babcock RC, Alderslade PN (1995) Chemical aspects of mass spawning in corals. II. (-)-Epi-thunbergol, the sperm attractant in the eggs of the soft coral Lobophytum crassum (Cnidaria: Octocorallia). Mar Biol 123(1):137–143.  https://doi.org/10.1007/BF00350332CrossRefGoogle Scholar
  17. DiBattista JD, Choat JH, Gaither MR, Hobbs J-PA, Lozano‐Cortés DF, Myers RF, Paulay G, Rocha LA, Toonen RJ, Westneat MW, Berumen ML (2015) On the origin of endemic species in the Red Sea. J Biogeogr 43(1):13–30.  https://doi.org/10.1111/jbi.12631CrossRefGoogle Scholar
  18. El Sayed KA, Hamann MT (1996) A new norcembranoid dimer from the Red Sea soft coral Sinularia gardineri. J Nat Prod 59(7):687–689.  https://doi.org/10.1021/np960207zCrossRefPubMedGoogle Scholar
  19. El Sayed KA, Hamann MT, Waddling CA, Jensen C, Lee SK, Dunstan CA, Pezzuto JM (1998) Structurally novel bioconversion products of the marine natural product sarcophine effectively inhibit JB6 cell transformation. J Org Chem 63(21):7449–7455.  https://doi.org/10.1021/jo9813134CrossRefPubMedGoogle Scholar
  20. El-Seedi HR, Gomaa M, Salem MM, Benchoula K, Keshk HM, Yosri N, Ayesh A, Asker AM, Soliman K, Hamza Z, Mansour HM (2016) Cytotoxic effects of the red sea soft coral sarcophyton trocheliophorum. Acta Pol Pharm 73(6):1587–1592Google Scholar
  21. Elkhateeb A, El-Beih AA, Gamal-Eldeen AM, Alhammady MA, Ohta S, Pare PW, Hegazy M-EF (2014) New terpenes from the Egyptian soft coral Sarcophyton ehrenbergi. Mar Drugs 12(4):1977–1986.  https://doi.org/10.3390/md12041977CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ellithey MS, Lall N, Hussein AA, Meyer D (2014) Cytotoxic and HIV-1 enzyme inhibitory activities of Red Sea marine organisms. BMC Complement Altern Med 14:77.  https://doi.org/10.1186/1472-6882-14-77CrossRefPubMedPubMedCentralGoogle Scholar
  23. Eltahawy NA, Ibrahim AK, Radwan MM, ElSohly MA, Hassanean HA, Ahmed SA (2014) Cytotoxic cembranoids from the Red Sea soft coral, Sarcophyton auritum. Tetrahedron Lett 55(29):3984–3988.  https://doi.org/10.1016/j.tetlet.2014.05.013CrossRefGoogle Scholar
  24. Eltahawy NA, Ibrahim AK, Radwan MM, Zaitone SA, Gomaa M, ElSohly MA, Hassanean HA, Ahmed SA (2015) Mechanism of action of antiepileptic ceramide from Red Sea soft coral Sarcophyton auritum. Bioorg Med Chem Lett 25(24):5819–5824.  https://doi.org/10.1016/j.bmcl.2015.08.039CrossRefGoogle Scholar
  25. Farag MA, Porzel A, Al-Hanimady MA, Hegazy M-EF, Meyer A, Mohamed TA, Westphal H, Wessjohann LA (2016) Soft corals biodiversity in the Egyptian Red Sea: a comparative MS and NMR metabolomics approach of wild and aquarium grown species. J Proteome Res 15(4):1274–1287.  https://doi.org/10.1021/acs.jproteome.6b00002CrossRefGoogle Scholar
  26. Farag MA, Al-Mahdy DA, Meyer A, Westphal H, Wessjohann LA (2017a) Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content. Sci Rep 7(1):648.  https://doi.org/10.1038/s41598-017-00527-8CrossRefPubMedPubMedCentralGoogle Scholar
  27. Farag MA, Fekry MI, Al-Hammady MA, Khalil MN, El-Seedi HR, Meyer A, Porzel A, Westphal H, Wessjohann LA (2017b) Cytotoxic effects of Sarcophyton sp. soft corals—is there a correlation to their NMR fingerprints? Mar Drugs 15(7):211.  https://doi.org/10.3390/md15070211CrossRefGoogle Scholar
  28. Farag MA, Meyer A, Ali SE, Salem MA, Giavalisco P, Westphal H, Wessjohann LA (2018) Comparative metabolomics approach detects stress-specific responses during coral bleaching in soft corals. J Proteome Res 17(6):2060–2071.  https://doi.org/10.1021/acs.jproteome.7b00929CrossRefPubMedGoogle Scholar
  29. Frank U, Bak RPM, Rinkevich B (1996) Allorecognition responses in the soft coral Parerythropodium fulvum fulvum from the Red Sea. J Exp Mar Biol Ecol 197(2):191–201.  https://doi.org/10.1016/0022-0981(95)00153-0CrossRefGoogle Scholar
  30. Fridkovsky E, Rudi A, Benayahu Y, Kashman Y, Schleyer M (1996) Sarcoglane, a new cytotoxic diterpene from Sarcophyton glaucum. Tetrahedron Lett 37(38):6909–6910.  https://doi.org/10.1016/0040-4039(96)01513-4CrossRefGoogle Scholar
  31. Georgopapadakou N (1995) The fungal cell wall as a drug target. Trends Microbiol 3(3):98–104.  https://doi.org/10.1016/S0966-842X(00)88890-3CrossRefPubMedGoogle Scholar
  32. Gomaa MN, Soliman K, Ayesh A, Abd El-Wahed A, Hamza Z, Mansour HM, Khalifa SA, Mohd Ali HB, El-Seedi HR (2016) Antibacterial effect of the Red Sea soft coral Sarcophyton trocheliophorum. Nat Prod Res 30(6):729–734. https://doi.org/10.1080/14786419.2015.1040991CrossRefGoogle Scholar
  33. Hassan HM, Khanfar MA, Elnagar AY, Mohammed R, Shaala LA, Youssef DTA, Hifnawy MS, El Sayed KA (2010) Pachycladins A–E, prostate cancer invasion and migration inhibitory eunicellin-based diterpenoids from the Red Sea soft coral Cladiella pachyclados. J Nat Prod 73(5):848–853.  https://doi.org/10.1021/np900787pCrossRefGoogle Scholar
  34. Hegazy MEF, Su J-H, Sung P-J, Sheu J-H (2011a) Cembranoids with 3,14-ether linkage and a secocembrane with bistetrahydrofuran from the Dongsha Atoll soft coral Lobophytum sp. Mar Drugs 9(7):1243–1253.  https://doi.org/10.3390/md9071243CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hegazy M-EF, El-Beih AA, Moustafa AY, Hamdy AA, Alhammady MA, Selim RM, Abdel-Rehim M, Pare PW (2011b) Cytotoxic cembranoids from the Red Sea soft coral Sarcophyton glaucum. Nat Prod Commun 6(12):1809–1812CrossRefGoogle Scholar
  36. Hegazy M-EF, Eldeen AMG, Shahat AA, Abdel-Latif FF, Mohamed TA, Whittlesey BR, Pare PW (2012) Bioactive hydroperoxyl cembranoids from the Red Sea soft coral Sarcophyton glaucum. Mar Drugs 10(1):209–222.  https://doi.org/10.3390/md10010209CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hegazy M-EF, Mohamed TA, Abdel-Latif FF, Alsaid MS, Shahat AA, Pare PW (2013) Trochelioid A and B, new cembranoid diterpenes from the Red Sea soft coral Sarcophyton trocheliophorum. Phytochem Lett 6(3):383–386.  https://doi.org/10.1016/j.phytol.2013.05.005CrossRefGoogle Scholar
  38. Hegazy MEF, Mohamed TA, Alhammady MA, Shaheen AM, Reda EH, Elshamy AI, Aziz M, Paré PW (2015) Molecular architecture and biomedical leads of terpenes from Red Sea marine invertebrates. Mar Drugs 13(5):3154–3181.  https://doi.org/10.3390/md13053154CrossRefGoogle Scholar
  39. Hegazy M-E, Mohamed T, Elshamy A, Al-Hammady M, Ohta S, Paré P (2016a) Casbane diterpenes from Red Sea coral Sinularia polydactyla. Molecules 21(3):308.  https://doi.org/10.3390/molecules21030308CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hegazy M-EF, Mohamed TA, Elshamy AI, Hassanien AA, Abdel-Azim NS, Shreadah MA, Abdelgawad II, Elkady EM, Pare PW (2016b) A new steroid from the Red Sea soft coral Lobophytum lobophytum. Nat Prod Res 30(3):340–344.  https://doi.org/10.1080/14786419.2015.1046871CrossRefGoogle Scholar
  41. Hegazy M-EF, Elshamy AI, Mohamed TA, Hamed AR, Ibrahim MAA, Ohta S, Pare PW (2017) Cembrene diterpenoids with ether linkages from Sarcophyton ehrenbergi: an anti-proliferation and molecular-docking assessment. Mar Drugs 15(6):192.  https://doi.org/10.3390/md15060192CrossRefPubMedCentralGoogle Scholar
  42. Kashman Y, Zadock E, Néeman L (1974) Some new cembrane derivatives of marine origin. Tetrahedron 30(19):3615–3620.  https://doi.org/10.1016/S0040-4020(01)97044-9CrossRefGoogle Scholar
  43. Kashman Y, Carmely S, Groweiss A (1981) Further cembranoid derivatives from the Red Sea soft corals Alcyonium flaccidum and Lobophytum crassum. J Org Chem 46(18):3592–3596.  https://doi.org/10.1021/jo00331a003CrossRefGoogle Scholar
  44. Kelman D, Kushmaro A, Loya Y, Kashman Y, Benayahu Y (1998) Antimicrobial activity of a Red Sea soft coral, Parerythropodium fulvum fulvum: reproductive and developmental considerations. Mar Ecol Prog Ser 169:87–95.  https://doi.org/10.3354/meps169087CrossRefGoogle Scholar
  45. Kelman D, Benayahu Y, Kashman Y (1999) Chemical defence of the soft coral Parerythropodium fulvum fulvum (Forskal) in the Red Sea against generalist reef fish. J Exp Mar Biol Ecol 238(1):127–137.  https://doi.org/10.1016/S0022-0981(99)00016-7CrossRefGoogle Scholar
  46. Kelman D, Benayahu Y, Kashman Y (2000) Variation in secondary metabolite concentrations in yellow and grey morphs of the Red Sea soft coral Parerythropodium fulvum fulvum: possible ecological implications. J Chem Ecol 26(5):1123–1133.  https://doi.org/10.1023/A:1005423708904CrossRefGoogle Scholar
  47. Kelman D, Kashman Y, Rosenberg E, Kushmaro A, Loya Y (2006) Antimicrobial activity of Red Sea corals. Mar Biol 149(2):357–363.  https://doi.org/10.1007/s00227-005-0218-8CrossRefGoogle Scholar
  48. Kinamoni Z, Groweiss A, Carmely S, Kashman Y, Loya Y (1983) Several new cembranoid diterpenes from three soft corals of the Red Sea. Tetrahedron 39(9):1643–1648.  https://doi.org/10.1016/S0040-4020(01)88575-6CrossRefGoogle Scholar
  49. Laylin T (2011) The Red Sea is getting hotter faster than the rest. Retrieved 20 July 2018, from https://greenprophet.com/2011/09/red-sea-is-hotter/
  50. Liang L-F, Guo Y-W (2013) Terpenes from the soft corals of the genus Sarcophyton: chemistry and biological activities. Chem Biodivers 10(12):2161–2196.  https://doi.org/10.1002/cbdv.201200122CrossRefPubMedGoogle Scholar
  51. Mariottini GL, Grice ID (2016) Antimicrobials from Cnidarians. A new perspective for anti-infective therapy? Mar Drugs 14(3):48CrossRefGoogle Scholar
  52. Mohamed Ali A-HA-R, Soliman YA-A (2010) Antifouling activity of crude extracts from some Red Sea soft corals. Thalassia Salentina 32:73–89.  https://doi.org/10.1285/i15910725v32p73CrossRefGoogle Scholar
  53. Mohammed TA-AA (2012) Coral reefs quantitatively assessment along the Egyptian Red Sea coast. Thalassas 28(2):17–26Google Scholar
  54. Mohammed R, Radwan MM, Ma G, Mohamed TA, Seliem MA, Thabet M, ElSohly MA (2017) Bioactive sterols and sesquiterpenes from the Red Sea soft coral Sinularia terspilli. Med Chem Res 26(8):1647–1652.  https://doi.org/10.1007/s00044-017-1876-zCrossRefGoogle Scholar
  55. Mustafa GA, Abd-Elgawad A, Ouf A, Siam R (2016) The Egyptian Red Sea coastal microbiome: a study revealing differential microbial responses to diverse anthropogenic pollutants. Environ Pollut 214:892–902.  https://doi.org/10.1016/j.envpol.2016.04.009CrossRefPubMedGoogle Scholar
  56. Ne’eman I, Fishelson L, Kashman Y (1974) Sarcophine—a new toxin from the soft coral Sarcophyton glaucum (Alcyonaria). Toxicon 12(6):593-IN6.  https://doi.org/10.1016/0041-0101(74)90192-5CrossRefGoogle Scholar
  57. Peng B-R, Lu M-C, El-Shazly M, Wu S-L, Lai K-H, Su J-H (2018) Aquaculture soft coral Lobophytum crassum as a producer of anti-proliferative cembranoids. Mar Drugs 16(1):15.  https://doi.org/10.3390/md16010015CrossRefPubMedCentralGoogle Scholar
  58. Řezanka T, Dembitsky VM (2001) γ-Lactones from the soft corals Sarcophyton trocheliophorum and Lithophyton arboreum. Tetrahedron 57(41):8743–8749.  https://doi.org/10.1016/S0040-4020(01)00853-5CrossRefGoogle Scholar
  59. Riegl B, Bruckner A, Coles SL, Renaud P, Dodge RE (2009) Coral reefs threats and conservation in an era of global change. In: Ostfeld RS, Schlesinger WH (eds) Year in ecology and conservation biology 2009, vol 1162. Wiley-Blackwell, Malden, pp 136–186Google Scholar
  60. Rocha LG, Almeida JRGS, Macêdo RO, Barbosa-Filho JM (2005) A review of natural products with antileishmanial activity. Phytomedicine 12(6):514–535.  https://doi.org/10.1016/j.phymed.2003.10.006CrossRefPubMedGoogle Scholar
  61. Sammarco P, Coll J (1992) Chemical adaptations in the Octocorallia: evolutionary considerations. Mar Ecol Prog Ser 88:93–104.  https://doi.org/10.3354/meps088093CrossRefGoogle Scholar
  62. Sammarco PW, Strychar KB (2013) Responses to high seawater temperatures in zooxanthellate octocorals. PLoS ONE 8(2):e54989.  https://doi.org/10.1371/journal.pone.0054989CrossRefPubMedPubMedCentralGoogle Scholar
  63. Sammarco PW, Coll JC, Barre SL, Willis B (1983) Competitive strategies of soft corals (Coelenterata: Octocorallia): Allelopathic effects on selected scleractinian corals. Coral Reefs 1(3):173–178.  https://doi.org/10.1007/BF00571194CrossRefGoogle Scholar
  64. Santalova EA, Makarieva TN, Gorshkova IA, Dmitrenok AS, Krasokhin VB, Stonik VA (2004) Sterols from six marine sponges. Biochem Syst Ecol 32(2):153–167.  https://doi.org/10.1016/S0305-1978(03)00143-1CrossRefGoogle Scholar
  65. Sarmiento-Vizcaíno A, González V, Braña AF, Palacios JJ (2017) Pharmacological potential of phylogenetically diverse Actinobacteria isolated from deep-sea coral ecosystems of the submarine Avilés Canyon in the Cantabrian Sea. Microb Ecol 73(2):338–352.  https://doi.org/10.1007/s00248-016-0845-2CrossRefPubMedGoogle Scholar
  66. Sawant S, Youssef D, Mayer A, Sylvester P, Wali V, Arant M, El Sayed K (2006) Anticancer and anti-inflammatory sulfur-containing semisynthetic derivatives of sarcophine. Chem Pharm Bull 54(8):1119–1123.  https://doi.org/10.1248/cpb.54.1119CrossRefPubMedGoogle Scholar
  67. Sawant SS, Youssef DTA, Sylvester PW, Wali V, El Sayed KA (2007) Antiproliferative Sesquiterpenes from the Red Sea soft coral Sarcophyton glaucum. Nat Prod Commun 2(2):117–119Google Scholar
  68. Shaaban M, Ghani MA, Shaaban KA (2013a) Zahramycins A-B, two new steroids from the coral Sarcophyton trocheliophorum. Z Naturforsch B 68(8):939–945.  https://doi.org/10.5560/znb.2013-3131CrossRefGoogle Scholar
  69. Shaaban M, Shaaban KA, Ghani MA (2013b) Hurgadacin: a new steroid from Sinularia polydactyla. Steroids 78(9):866–873.  https://doi.org/10.1016/j.steroids.2013.05.006CrossRefPubMedGoogle Scholar
  70. Shaaban K, Ghani M, Shaaban M (2015) New cembranoid diterpenes from Sarcophyton trocheliophorum. Br J Pharm Res 5(3):192–201.  https://doi.org/10.9734/BJPR/2015/14757CrossRefGoogle Scholar
  71. Shaaban M, Ghani MA, Shaaban KA (2016) Unusual pyranosyl cembranoid diterpene from Sarcophyton trocheliophorum. Zeitschrift für Naturforschung B 71(12):1211–1217CrossRefGoogle Scholar
  72. Shaker KH, Muller M, Ghani MA, Dahse H-M, Seifert K (2010) Terpenes from the soft corals Litophyton arboreum and Sarcophyton ehrenbergi. Chem Biodivers 7(8):2007–2015.  https://doi.org/10.1002/cbdv.201000016CrossRefPubMedGoogle Scholar
  73. Soliman YAA, Brahim AM, Moustafa AH, Hamed MAF (2017) Antifouling evaluation of extracts from Red Sea soft corals against primary biofilm and biofouling. Asian Pac J Trop Biomed 7(11):991–997.  https://doi.org/10.1016/j.apjtb.2017.09.016CrossRefGoogle Scholar
  74. Tchernov D, Gorbunov MY, de Vargas C, Narayan Yadav S, Milligan AJ, Häggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101(37):13531–13535.  https://doi.org/10.1073/pnas.0402907101CrossRefPubMedGoogle Scholar
  75. Wooldridge SA (2010) Is the coral-algae symbiosis really “mutually beneficial” for the partners? BioEssays 32(7):615–625.  https://doi.org/10.1002/bies.200900182CrossRefPubMedGoogle Scholar
  76. Zubair MS, Al-Footy KO, Ayyad S-EN, Al-Lihaibi SS, Alarif WM (2016) A review of steroids from Sarcophyton species. Nat Prod Res 30(8):869–879.  https://doi.org/10.1080/14786419.2015.1079187CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Erick E. Dokalahy
    • 1
  • H. R. El-Seedi
    • 2
    • 3
  • Mohamed Ali Farag
    • 1
    Email author
  1. 1.Pharmacognosy DepartmentCollege of Pharmacy, Cairo UniversityCairoEgypt
  2. 2.Pharmacognosy Group, Department of Medicinal ChemistryUppsala University, Biomedical CentreUppsalaSweden
  3. 3.International Research Center for Food Nutrition and SafetyJiangsu UniversityZhenjiangChina

Personalised recommendations