Chemical Ecology of Ruta sp.: VOC, Chemotaxonomy and Allelochemistry

  • Zineb BennaoumEmail author
  • Hachemi Benhassaini
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 24)


Among the Rutaceae, the genus Ruta is an ideal model for understanding the structure and the origin of the diversity of volatile organic compounds (VOCs), since they have been for several years the subject of a thorough investigation of their interest in chemotaxonomy and pharmacology. The characteristics of these species are the presence of schizogenic secretory cavities that represent the original site of the synthesis of aromatic compounds. The power of these smells is also effective between a plant and its environment. In this chapter, we describe how, where, and by which pathways these species produce the volatile essence. We define the specific chemotype of the genus Ruta within the Rutaceae family. Moreover, we evoke the interest of VOCs in the foundations of chemical ecology to understand the role and the importance of chemical molecules in plant–insect–environment interactions.


Chemical ecology VOC Ruta Schizogenic Chemotaxonomy 


  1. Aboutabl EA, Elazzouny AA, Hammerschmidt F (1988) The essential oil of Ruta graveolens L. growing in Egypt. Sci Pharm 56:121–124Google Scholar
  2. Aharoni A, Giri AP et al (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16(11):3110–3131PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aliotta G, Cafiero G, De Feo V, Sacch R (1994) Potential allelochemicals from Ruta graveolens L. and their action on radish seeds. J Chem Ecol 20:2761–2775PubMedCrossRefGoogle Scholar
  4. Aliotta G, Cafiero G, De Feo V, Palumbo AD, Strumia S (1996) Infusion of rue for control of purslane weed: biological and chemical aspects. Allelopathy J 3:207–216Google Scholar
  5. Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae, Ed. Elsevier Academic Press, Amsterdam, BostonGoogle Scholar
  6. Angioni A, Barra A (2006) Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J Agric Food Chem 54(12):4364–4370PubMedCrossRefGoogle Scholar
  7. Antunes T (1982) Ultrastructure of secretory leaf glands of Ruta chalepensis L. Bull de la Société botanique de France 129(1):79–82CrossRefGoogle Scholar
  8. Asplund RO (1968) Monoterpenes: relationship between structure and inhibition of germination. Phytochemistry 7:1995–1997CrossRefGoogle Scholar
  9. Asplund RO (1969) Some quantitative and qualitative aspects of the phytotoxicity of monoterpenes. Weed Sci 17:454–455CrossRefGoogle Scholar
  10. Atal CK (1982) Cultivation and utilization of aromatic plants, 1st edn. Council of Scientific and Industrial Research, New DelhiGoogle Scholar
  11. Atti-Santos AC, Pansera MR (2004) Seasonal variation of essential oil yield and composition of Thymus vulgaris L. (Lamiaceae) from South Brazil. J Essent Oil Res 16(4):294–295CrossRefGoogle Scholar
  12. Bachelot C, Blaise A, Corbel T, Le G (2005) Les huiles essentielles. 27 pGoogle Scholar
  13. Bagchi GD, Dwivedi PD, Singh A, Haider F, Naqvi A (2003) Variations in essential oil constituents at different growth stages of Ruta chalepensis on cultivation at north Indian plains. J Essent Oil Res 15:263–264CrossRefGoogle Scholar
  14. Baldwin IT, Halitschke R et al (2006) Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science 311(5762):812–815PubMedCrossRefPubMedCentralGoogle Scholar
  15. Balz R (1986) Les huiles essentielles et comment les utiliser, Ed. Rodolphe BALZ, 152 pGoogle Scholar
  16. Baser KH, Ozek CT, Beis SH (1996) Medicinal constituents of the essential oil of Ruta chalepensis L. from Turkey. J Essent Oil Res 8:413–414CrossRefGoogle Scholar
  17. Becerra JX (2007) The impact of herbivore-plant coevolution on plant community structure. Proc Natl Acad Sci USA 104:7483–7488PubMedCrossRefPubMedCentralGoogle Scholar
  18. Bednarek P, Osbourn A (2009) Plant–microbe interactions: chemical diversity in plant defense. Science 324:746–748PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bennaoum Z, Benhassaini H (2017) Autoecology and place of species of the Ruta genus in vegetation of north-western Algeria. Ecologia Mediterr 43(1):19–35Google Scholar
  20. Bennaoum Z, Benhassaini H, Larabi F, Tirse M (2015) Macro and micro-phytodermic seasonal characters of wild Ruta species (Ruta montana, Ruta chalepensis subsp. latifolia and Ruta chalepensis subsp. angustifolia) in northwestern Algeria. J G A E 3:56–68Google Scholar
  21. Bennaoum Z, Benhassaini H, Falconieri D, Piras A, Porcedda S (2017) Chemical variability in essential oils from Ruta species among seasons, and its taxonomic and ecological significance. Nat Prod Res 31(19):2329–2334PubMedCrossRefGoogle Scholar
  22. Bergougnoux V, Caissard J-C, Jullien F, Magnard J-L, Scalliet G, Mark Cock J, Hugueney P, Baudino S (2007) Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta 226(4):853–866PubMedCrossRefGoogle Scholar
  23. Bertin N, Staudt M (1996) Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees. Oecologia 107:456–462PubMedCrossRefGoogle Scholar
  24. Bertrand C, Fabre N, Moulis C (2003) Composition of the essentials oil of Ruta Corsica DC. J Essent Oil Res 15(2):98–99CrossRefGoogle Scholar
  25. Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J. 54(4):656–669PubMedCrossRefGoogle Scholar
  26. Bouabidi W, Hanana M, Gargouri S, Amri I, Fezzani T, Ksontini M, Jamoussi B, Hamrouni L (2015) Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils. Nat Prod Res 29(9):864–868PubMedCrossRefGoogle Scholar
  27. Boutoumi H, Saad M, Khodja M (2009) Essential oil from Ruta montana L. (Rutaceae) chemical composition, insecticidal and larvicidal activities. J Essent Oil Bear Pl 12:714–721CrossRefGoogle Scholar
  28. Bruneton J (1999) Pharmacogonosie, phytochimie, plantes médicinales, 3rd edn. Lavoisier, ParisGoogle Scholar
  29. Champagne DE, Koul O, Isman MB, Scudder GGE, Neil Towers GH (1992) Biological activity of limonoids from the rutales. Phytochemistry 31:377–394CrossRefGoogle Scholar
  30. Chartier M, Gibernau M, Renner SS (2014) The evolution of pollinator/plant interaction types in the Araceae. Evolution 68:1533–1543PubMedCrossRefGoogle Scholar
  31. Chase MW, Morton CM, Kallunki JA (1999) Phylogenetic relationships of Rutaceae: a cladistic analysis of the subfamilies using evidence from rbcL and atpB sequence variation. Am J Bot 86:1191–1199PubMedCrossRefGoogle Scholar
  32. Chatin J (1875) Etudes histologiques et histogéniques sur les glandes foliaires intérieures et quelques productions analogues: annales des sciences naturelle. Ed Imprimerie Martinet, ParisGoogle Scholar
  33. Chen F, Ro DK et al (2004) Characterization of a root-specific arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-Cineole. Plant Physiol 135(4):1956–1966PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol 89:99–102PubMedCrossRefPubMedCentralGoogle Scholar
  35. Chibani S, Bouratoua A, Kabouche A, Laggoune S, Semra Z, Smati F, Kabouche Z (2013) Composition and antibacterial activity of the essential oil of Ruta chalepensis subsp. angustifolia from Algeria Der Pharm Lett 5(5):252–255Google Scholar
  36. Copolovici LO, Filella I et al (2005) The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiol 139:485–496PubMedPubMedCentralCrossRefGoogle Scholar
  37. Croteau R (1986) Biochemistry of monoterpenes and sesquiterpenes of the essentials oils herbs, spices and médicinal plants. Recent Adv Botany Hortic Pharmacol 1:81–133Google Scholar
  38. Croteau R, Felton M (1981) Relationship of camphor biosynthesis to leaf development in Sage (Salvia officinalis). Plant Physiol 67(4):820–824PubMedPubMedCentralCrossRefGoogle Scholar
  39. Da Silva MF, das GF, Gottlieb OR, Ehrendorfer F (1988) Chemosystematics of the Rutaceae: suggestions for a more natural taxonomy and evolutionary interpretation of the family. Plant Syst Evol 161:97–134Google Scholar
  40. Dahlgren RMT (1980) A revised system of classification of the angiosperms. Bot J Linean Soc 80:91–124CrossRefGoogle Scholar
  41. De Feo V, Desimone F, Senatore F (2002) Potential allele chemicals from the essential oil of Ruta graveolens. Phytochemistry 61:573–578PubMedCrossRefPubMedCentralGoogle Scholar
  42. Delfine S, Csiky O, Seufert G, Loreto F (2000) Fumigation with exogenous monoterpenes of a nonisoprenoid-emitting oak (Quercus suber): monoterpene acquisition, translocation, and effect on the photosynthetic properties at high temperatures. New Phytol 146:27–36CrossRefGoogle Scholar
  43. Derbesy M (1997) Reproductibilité des extraits naturels industriels. Ed PaIums Actualités Cosmétiques, 132 pGoogle Scholar
  44. Despinasse Y (2015) Diversité chimique et caractérisation de l’impact du stress hydrique chez les lavandes, 181 ppGoogle Scholar
  45. Deysson G (1978) Organisation et classification des plantes vasculaires. ed SEDES, ParisGoogle Scholar
  46. Djarri L, Ferhat M, Merabet G, Chelghoum A, Laggoune S, Semra Z, Smati F, Kabouche Z (2013) Composition and antibacterial activity of the essential oil of Ruta montana from Constantine (Algeria). Der Pharmacia Lett 5(4):70–73Google Scholar
  47. Dob T, Dahmane D, Gauriat-Desrdy B, Daligault V (2008) Volatile constituents of the essential oil of Ruta chalepensis L. subsp angustifolia (Pers.) P. Cout J Essent Oil Res 20:306–309CrossRefGoogle Scholar
  48. Duarte LP, Figueiredo RC, Sousa GF, Soares DBS, Rodrigues SBV, Silva FC, Silva GDF (2010) Chemical constituents of Salacia elliptica (Celastraceae). Quim Nova 33:900–903CrossRefGoogle Scholar
  49. Dudareva N, Negre F (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25(5):417–440CrossRefGoogle Scholar
  50. Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135(4):1893–1902 Google Scholar
  51. Duraffourd C, Lapraz JC (2002) Traité de phytothérapie clinique. Ed. Maloine, ParisGoogle Scholar
  52. Edris AE (2007) Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituent. Phytother Res 21:308–323PubMedCrossRefGoogle Scholar
  53. Ehlting J, Hamberger B, Million-Rousseau R, WerckReichhart D (2006) Cytochromes P450 in the phenolic metabolism. Phytochem Rev 5:293–308CrossRefGoogle Scholar
  54. Engler A (1931) Rutaceae. The natural plant families. Ed Die naturlichen Pflanzen familien. 2 Aufl 19 a. Leipzig (Germany): EngelmannGoogle Scholar
  55. Ferhat M, Kabouche A, Kabouche Z (2014) Comparative compositions of essential oils of three Ruta species growing in different soils. J Mater Environ Sci 5:735–738Google Scholar
  56. Figueiredo AC, Barroso JG et al (1995) Composition of the essential oil of Lavandula pinnata L. fil. var. pinnata grown on madeira. Flavour Fragrance J 10(2):93–96Google Scholar
  57. Fischer NH, Williamson GB et al (1994) In search of allelopathy in the florida scrub-the role of terpenoids. J Chem Ecol 20:1355–1380PubMedCrossRefGoogle Scholar
  58. Franchomme P, Penoel D (1990) L’aromathérapie exactement, encyclopédie de l’utilisation thérapeutique des huiles essentielles. Ed. Jollois, LimogesGoogle Scholar
  59. Friedman J (1987) Allelopathy in desert ecosystems. In: Waller GR (ed ) Allelochemicals: role in agriculture and forestry. A. C. S. SymposiumGoogle Scholar
  60. Gallet C, Pellissier F (2002) Interactions allélopathiques en milieu forestier. Rev For Fr LIV 6:567–576CrossRefGoogle Scholar
  61. Gershenzon J, Dudareva N (2007) The function of terpene natural products in the natural world. Nat Chem Biol 3(7):408–414PubMedCrossRefGoogle Scholar
  62. Gershenzon J, McConkey ME et al (2000) Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol 122(1):205–214PubMedPubMedCentralCrossRefGoogle Scholar
  63. Giampieri M, Balbi A, Mazzei M, La Colla P, Ibba C, Lodd R (2009) Antiviral activity of indole derivatives. Antiviral Res 83:179–185PubMedCrossRefGoogle Scholar
  64. Gibbs RD (1974) Chemotaxonomy of flowering plants. Ed McGill, Queen’s University PressGoogle Scholar
  65. Gibka J, Kunicka-Styczynska A, Glinski M (2009) Antimicrobial activity of undecan- 2-one, Undecan-2-ol and their Derivatives. J Essent Oil Bearing Plants 12:605–614CrossRefGoogle Scholar
  66. Gill RS, Gupta K, Taggar GK, Taggar MS (2010) Role of oxidative enzymes in plant defenses against herbivory. Acta Phytopathol Entomol Hung 45:277–290CrossRefGoogle Scholar
  67. Gotsiou P, Naxakis G et al (2002) Diversity in the composition of monoterpenoids of Origanum microphyllum (Labiatae). Biochem Syst Ecol 30(9):865–879CrossRefGoogle Scholar
  68. Gouinguene SP, Turlings TCJ (2002) The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol 129(3):1296–1307PubMedPubMedCentralCrossRefGoogle Scholar
  69. Guignard JL (1983) Abrégé de botanique. Ed Masson, Paris, 259 pGoogle Scholar
  70. Guitton Y, Nicolè F et al (2010) Differential accumulation of volatile terpene and terpene synthase mRNAs during lavender (Lavandula angustifolia and L. x intermedia) inflorescence development. Physiol Plant 138:150–163PubMedCrossRefGoogle Scholar
  71. Haberlandt G (1914) Physiological plant anatomy. Ed Macmillan, London. 777 pGoogle Scholar
  72. Halligan JP (1975) Toxic terpenes from Artemisia californica. Ecology 56:999–1003CrossRefGoogle Scholar
  73. Hammiche V, Azzouz M (2013) Les rues: ethnobotanique, phytopharmacologie et toxicité. Phytothérapie 11:22–30CrossRefGoogle Scholar
  74. Harborne JB, Turner BL (1984) Plant chemosystematics. Ed Academic PressGoogle Scholar
  75. Hegnauer R (1986) Phytochemistry and plant taxonomy-an essay on the chemotaxonomy of higher plants. Phytochemistry 25:1519–1535CrossRefGoogle Scholar
  76. Heil M, Silva Bueno JC (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proc Natl Acad Sci 104(13):5467–5472PubMedCrossRefGoogle Scholar
  77. Heiling S, Schuman MC et al (2010) Jasmonate and pphsystemin regulate key malonylation steps in the biosynthesis of 17-hydroxygeranyl linalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell 22:273–292PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hendel-Rahmanim K, Masci T et al (2007) Diurnal regulation of scent emission in rose flowers. Planta 226(6):1491–1499PubMedCrossRefGoogle Scholar
  79. Holm YI, Laakso I (1997) Variation in the essential oil composition of Artemisia annua L. of different origin cultivated in Finland. Flavour Fragrance J 12(4):241–246CrossRefGoogle Scholar
  80. Hopkins W (2003) Plant physiology. Ed. Deboek Larcier, 513 ppGoogle Scholar
  81. Horiuchi JI, Arimura GI, Ozawa R, Shimoda T, Dicke M, Takabayashi J et al (2003) Lima bean leaves exposed to herbivore-induced conspecific plant volatiles attract herbivores in addition to carnivores. Appl Entomol Zool (Jpn) 38:365–368CrossRefGoogle Scholar
  82. Iijima Y, Davidovich-Rikanati R et al (2004a) The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol 136(3):3724–3736PubMedPubMedCentralCrossRefGoogle Scholar
  83. Iijima Y, Gang DR et al (2004b) Characterization of geraniol synthase from the peltate glands of sweet basil. Plant Physiol 134(1):370–379PubMedPubMedCentralCrossRefGoogle Scholar
  84. Inigo RPA, De Viana MEL, Catalan CAN, De Iglesias DIA (1981) Ess Deriv Argumari 51:349–351; in Ferhat M Kabouche A Kabouche Z (2014) Comparative compositions of essential oils of three Ruta species growing in different soils. J Mater Environ Sci 5:735–738Google Scholar
  85. Jeaun JM, Annie F, Chrystian JL (2005) Phenolic compounds of plants. pp 203–204Google Scholar
  86. Johnson CB, Kazantzis A (2004) Seasonal, populational and ontogenic variation in the volatile oil content and composition of individuals of Origanum vulgare subsp. Hirtum, assessed by GC headspace analysis and by SPME sampling of individual oil glands. Phytochem Anal 15(5):286–292PubMedCrossRefGoogle Scholar
  87. Keeling CI, Bohlmann J (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675PubMedCrossRefGoogle Scholar
  88. Kelemu S, Niassy S, Torto B, Fiaboe K, Affognon H, Tonnang H, Maniania NK, Ekesi S (2015) African edible insects for food and feed: inventory, diversity, commonalities and contribution to food security. J Insects Food Feed 1(2):103–119CrossRefGoogle Scholar
  89. Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328Google Scholar
  90. Khadhri A, Bouali I, Belkhir S, El Mokni R, Smiti S, Almeida C, Nogueira JMF, Eduarda M, Araújo M (2014) Chemical variability of two essential oils of tunisian rue: Ruta montana and Ruta chalepensis. J Essent Oil Bear Pl 17:445–451CrossRefGoogle Scholar
  91. Kholi RK (1994) Allelopathic implications of eucalyptus in agroecosystems In: Narwal SS Tauro P (eds) Allelopathy in agriculture and forestry. Scientific Publishers, JodhpurGoogle Scholar
  92. Kienast H (1885) About the development of containers in the leaves of Hypericum and RutaGoogle Scholar
  93. Knudsen J, Eriksson R et al (2006) Diversity and distribution of floral scent. Bot Rev 72(1):1–120CrossRefGoogle Scholar
  94. Kordali S, Kesdek M et al (2007) Toxicity of monoterpenes against larvae and adults of Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Ind Crops Prod 26(3):278–297CrossRefGoogle Scholar
  95. Lafuente EO (2006) Stratégies d’émission de Composés organiques volatils (COV) par quatre espèces végétales méditerranéennes, 286 pGoogle Scholar
  96. Lamnaour D (2006) Morphological description, geographical distribution and ecology of Ruta chalepensis L. Rutaceae. Guide Med Plants North Afr 12(1):241–244Google Scholar
  97. Levin RA, McDade LA et al (2003) The systematic utility of floral and vegetative fragrance in two genera of nyctaginaceae. Syst Biol 52(3):334–351PubMedCrossRefPubMedCentralGoogle Scholar
  98. Lin FD, Knabe DA, Tanksley TD (1987) Apparent digestibility of amino acids, gross energy and starch in corn, sorghum, wheat, barley, oat groats and wheat middlings for growing pigs. J Anim Sci 64:1655–1665PubMedCrossRefPubMedCentralGoogle Scholar
  99. Loreto F, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15:154–166PubMedCrossRefPubMedCentralGoogle Scholar
  100. Maffei ME (2010) Site of synthesis, biochemistry and functional role of plant volatiles. S Afr J Bot 76:612–631CrossRefGoogle Scholar
  101. Majdoub O, Dhen N, Souguir S, Haouas D, Baouandi M, Laarif A, Chaieb I (2014) Chemical composition of Ruta chalepensis essential oils and their insecticidal activity against Tribolium castaneum. Tunisian J Plant Prot 9:83–90Google Scholar
  102. Malik AA, Showkat RM, Javed A (2013) Ruta graveolens L. essential oil composition under different nutritional treatments. Middle East J Sci Res 17(7):885–890Google Scholar
  103. Mancuso G, Borgonovo G, Scaglioni L, Bassoli A (2015) Phytochemicals from Ruta graveolens activate TAS2R bitter taste receptors and TRP channels involved in gustation and nociception. Molecules 20:18907–18922PubMedPubMedCentralCrossRefGoogle Scholar
  104. Mann J (1987) Secondary metabolism, 2nd ed. Clarendon press Oxford, 374 pGoogle Scholar
  105. Martin DM, Gershenzon J et al (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132:1586–1599PubMedPubMedCentralCrossRefGoogle Scholar
  106. Mattiacci L, Hütter E et al (2000) Plantodour mediates parasitoid host handling and oviposition in an endophytic tritrophic system. Chemoecology 10:185–192CrossRefGoogle Scholar
  107. Mazzei M, Nieddu E, Miele M, Balbi A, Ferrone M, Fermeglia M, Mazzei MT, Pricl S, La Colla P, Marongiu F, Ibba C, Loddo R (2007) Activity of Mannich bases of 7-hydroxycoumarin against Flaviviridae. Bioorg Med Chem 16:2591–2605PubMedCrossRefGoogle Scholar
  108. Mejri J, Abderrabba M, Mejri M (2010) Chemical composition of the essential oil of Ruta chalepensis L: influence of drying, hydro-distillation duration and plant parts. Ind Crop Prod 32:671–673CrossRefGoogle Scholar
  109. Mejri J, Bouajila J, Aydi A, Barth D, Abderrabba M, Mejri M (2012) Supercritical CO2 extract and essential oil of Ruta chalepensis L. growing in Tunisia: a natural source of Undecan-2-one. Anal Chem Lett 2:290–300CrossRefGoogle Scholar
  110. Merghache S, Hamza M, Tabti B (2009) Etude physicochimique de l’huile essentielle de Ruta chalepensis L. de Tlemcen. Algérie Afriq Sci 5:67–81Google Scholar
  111. Michael Smith C (1985) Expression, mechanisms and chemistry of resistance in soybean, Glycine max L. (Merr.) to the soybean looper. Pseudoplusia Includens (Walker) 6(3):243–248Google Scholar
  112. Milesi S, Massot B, Gontier E, Bourgaut F, Guckert A (2001) Ruta graveolens L.: a promising species for the production of furanucoumarins. Plant Sci 161:189–199CrossRefGoogle Scholar
  113. Millar J, Midland S et al (2005) (2,3,4,4-Tetramethylcyclopentyl) methyl acetate, a sex pheromone from the obscure mealybug: first example of a new structural class of monoterpenes. J Chem Ecol 31:2999–3005PubMedCrossRefGoogle Scholar
  114. Monterde P (1986) Nouvelle flore du Liban et de la Syrie. Ed Beyrouth, Liban, 563pGoogle Scholar
  115. Moore BD, Andrew R, LKülheim C, Foley WJ (2013) Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytol 201(3):733–750PubMedCrossRefGoogle Scholar
  116. Muller CH (1966) The role of chemical inhibition (allelopathy) in vegetational composition. Bull Torrey Bot Club 93(5):332–351CrossRefGoogle Scholar
  117. Muller WH, Lorber P, Haley B, Johnson K (1969) Volatile growth inhibitors produced by Salvia leucophylla: effect on oxygen uptake by mitochondrial suspensions. Bull Torrey Bot Club 96(1):89–96CrossRefGoogle Scholar
  118. Muñoz-Bertomeu J, Ros R et al (2008) Expression of spearmint limonene synthase in transgenic spike lavender results in an altered monoterpene composition in developing leaves. Metab Eng 10(3–4):166–177PubMedCrossRefGoogle Scholar
  119. Oussalah M, Caillet S, Saucier L, Lacroix M (2007) Inhibition effects of selected plant essential oils on the growth of four pathogenic bacteria: E. coliO157: H 7, Salmonella Typhimurium, Staphylococcus aureus and Listeria manocytogense. Food Control 18:414–420CrossRefGoogle Scholar
  120. Paris R, Delaveau P (1965) Possibilités et limites de la Chimiotaxinomie. Bull de la Société Botanique de France 112:143–149CrossRefGoogle Scholar
  121. Paschold A, Halitschke R et al (2006) Using ‘mute’ plants to translate volatile signals. Plant J 45:275–291PubMedCrossRefGoogle Scholar
  122. Pellmyr O (1986) Three pollination morphs in Cimicifuga simplex; incipient speciation due to inferiority in competition. Oecologia 68:304–307PubMedCrossRefGoogle Scholar
  123. Penuelas J, Llusia J (2002) Linking photorespiration, monoterpenes and thermotolerance in Quercus. New Phytol 155:227–237CrossRefGoogle Scholar
  124. Peñuelas J, Munné-Bosch S (2005) Isoprenoids: an evolutionary pool for photoprotection. Trends Plant Sci 10(4):166–169PubMedCrossRefGoogle Scholar
  125. Peñuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15:133–144PubMedCrossRefGoogle Scholar
  126. Peterson RL, Scott MG, Ellis BE (1978) Structure of a stem-derived callus of Ruta graveolens: meristems, leaves, and secretory structures. Can J Bot 56(21):2717–2729CrossRefGoogle Scholar
  127. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5(3):237–243PubMedCrossRefGoogle Scholar
  128. Rasmann S, Turlings TCJ (2008) First insights into specificity of belowground tritrophic interactions. Oikos 117:362–369CrossRefGoogle Scholar
  129. Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737PubMedCrossRefGoogle Scholar
  130. Rasool R, Ganai BA, Akbar S, Kamili AN, Masood A (2010) Phytochemical screening of Prunella vulgaris L. an important medicinal plant of Kashmir. Pak J Pharm Sci 23:399–402PubMedGoogle Scholar
  131. Raymond M (2005) L’aromathérapie chez le nourrisson et le petit enfant, 101 pGoogle Scholar
  132. Reyes RE, Gonzales AG (1970) Structure of pinnarin and furopinnarin, two new coumarins from the roots of Ruta pinnata. Phytochemistry 9:833–840CrossRefGoogle Scholar
  133. Rice EL (1984) Allelopathhy. Ed Academic Press, OrlandoGoogle Scholar
  134. Richter G (1993) Métabolisme des végétaux: Physiologie et biochimie. Ed. Presses polytechniques et universitaires. Romandes, 292 pGoogle Scholar
  135. Rose USR, Manukian A et al (1996) Volatile semiochemicals released from undamaged cotton leaves. Plant Physiol 111:487–495PubMedPubMedCentralCrossRefGoogle Scholar
  136. Rustaiyan A, Khossravi M, Sultani-Lotfabadi F, Yari M, Masoudi S, Monfared A (2002) Constituents of the essential oil of Ruta chalepensis L. from Iran. J Essent Oil Res 14:378–379CrossRefGoogle Scholar
  137. Salvo G, Bacchetta G, Ghahremaninejad F, Conti E (2008) Phylogenetic relationships of Rutaceae: new evidence from the chloroplast genome and comparisons with non-molecular data. J Mol Phylogenet Evol 49:736–748CrossRefGoogle Scholar
  138. Salvo G, Simon YW, Rosenbau G, Ree R, Conti E (2010) Tracing the temporal and spatial origins of island endemics in the mediterranean region: a case study from the citrus family (Ruta L., Rutaceae). Syst Biol 59(6):705–722PubMedCrossRefGoogle Scholar
  139. Samate DA (2002) Compositions chimiques d’huiles essentielles extraites de plantes aromatiques de la zone soudanienne du Burkina Faso, 250pGoogle Scholar
  140. Sangwan NS, Farooqi AHA et al (2001) Regulation of essential oil production in plants. Plant Growth Regul 34(1):3–21CrossRefGoogle Scholar
  141. Sharkey TD, Wiberley AE et al (2008) Isoprene emission from plants: Why and how. Ann Bot 101:5–18PubMedCrossRefGoogle Scholar
  142. Singh N, Luthra R et al (1989) Effect of leaf position and age on the essential oil quantity and quality in lemongrass (Cymbopogon flexuosus). Planta Med 55(3):254–256PubMedCrossRefGoogle Scholar
  143. Singh R (2016) Chemotaxonomy: a tool for plant classification. J. Med Plants Stud 4(2):90–93Google Scholar
  144. Singh HP, Batish DR, Kaur S, Arora K, Kohli RK (2006) α-Pinene inhibits growth and induces oxidative stress in roots. Ann Bot 98(6):1261–1269PubMedPubMedCentralCrossRefGoogle Scholar
  145. Singsaas EL, Lerdau M, Winter K, Sharkey TD (1997) Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiol 115:1413–1420PubMedPubMedCentralCrossRefGoogle Scholar
  146. Smith PM (1976) The chemotaxonomy of plants London. Ed Edward ArnoldGoogle Scholar
  147. Soleimani M, Aberoomand-Azar P, Saber-Tehrani M, Rustaiyan A (2009) Volatile composition of Ruta graveolens L. of North of Iran. World Appl Sci 7:124–126Google Scholar
  148. Spichiger RE, Savolainen VV, Figeat M, Jean-Monod DB (2004) Botanique systématique des plantes à fleurs: Une approche phylogénétique nouvelle des angiospermes des régions tempérés et tropicales, 3rd edn. Presse polytechnique et universitaire romande, Lossane, p 413pGoogle Scholar
  149. Stashenko EE, Acosta R, Martínez JR (2000) High-resolution gas-chromatographic analysis of the secondary metabolites obtained by subcritical-fluid extraction from Colombian rue (Ruta graveolens L.). J Biochem Biophys Methods 5(43):379–390PubMedCrossRefGoogle Scholar
  150. Stevens PF (1984) Homology and phylogeny: morphology and systematics. Syst Bot 9(4):395–409CrossRefGoogle Scholar
  151. Tang Z, Yang Y, Yang Y, Xu Y (2011) Chemical composition and biological activity of the essential oil of Ruta graveolens. Zhongguo Xiandai Yingyong Yaoxue 28(9):834Google Scholar
  152. Tarayre M, Thompson JD et al (1995) Intraspecific variation in the inhibitory effects of Thymus vulgaris (Labiatae) monoterpenes on seed-germination. Oecologia 101:110–118PubMedCrossRefGoogle Scholar
  153. Tirse M, Benhassaini H, Bennaoum Z, Nitsche S, Chaudanson D, Aufray B, Sail K, Bassou G (2017) Foliar microphytodermal characterization of Pistacia lentiscus under different bioclimates from Northwest Algeria. Arab J Med Aromat Plants 3(1):28–42Google Scholar
  154. Ton JD, Alessandro M et al (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49(1):16–26PubMedCrossRefGoogle Scholar
  155. Touche J (1997) Représentativité et reproductibilité des extraits de végétaux aromatiques au niveau du végétal. Rivista Italiana EPPOS 288–294Google Scholar
  156. Tschirch A, Stock E (1933) The resins. Ed Berlin, BorntraegerGoogle Scholar
  157. Turlings TCJ, Tumlinson JH et al (1990) Exploitation of herbivore induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253PubMedCrossRefGoogle Scholar
  158. Ulubelen A, Öztürk M (2006) Alkaloids and coumarins from Ruta species. Nat Prod Commun 1(10):851–857Google Scholar
  159. Unsicker SB, Kunert G (2009) Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Curr Opin Plant Biol 12(4):479–485PubMedCrossRefGoogle Scholar
  160. Velikova V, Várkonyi Z, Szabó M, Maslenkova L, Nogues I, Kovács L, Peeva V, Busheva M, Garab G, Sharkey TD, Loreto F (2011) Increased thermostability of thylakoid membranes in isoprene-emitting leaves probed with three biophysical techniques. Plant Physiol 157:905–916PubMedPubMedCentralCrossRefGoogle Scholar
  161. Verzera A, Mondello L, Ragusa S, Dugo G (2000) Essential oil of the leaves of a typical mediterranean plant: Note II. Ruta chalepensis L. (Rutaceae). Essenze e derivati agrumari 70:207–210Google Scholar
  162. Voirin B, Bayet C (1996) Developmental changes in the monoterpene composition of Mentha x piperita leaves from individual peltate trichomes. Phytochemistry 43(3):573–580CrossRefGoogle Scholar
  163. War AR, Paulraj MG, War MY, Ignacimuthu S (2011) Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). Plant Signal Behav 6:1787–1792PubMedPubMedCentralCrossRefGoogle Scholar
  164. Waterman PG (1975) Alkaloids of the Rutaceae: their distribution and systematic significance. Biochem Syst Ecol 3:149–180CrossRefGoogle Scholar
  165. Waterman PG (1983) Phylogenetic implications of the distribution of secondary metabolites within the Rutales. In: Salvo G, Bacchetta G, Ghahremaninejad F, Conti E (2008) Phylogenetic relationships of Rutaceae: new evidence from the chloroplast genome and comparisons with non-molecular data. J. Mol Phylogenet Evol 49:736–748Google Scholar
  166. Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75(2):225–233CrossRefGoogle Scholar
  167. Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19PubMedPubMedCentralCrossRefGoogle Scholar
  168. Yaacob KB, Abdullah CM, Joulain D (1989) Essential oil of Ruta graveolens L. J. Essent Oil Res 1:203–207CrossRefGoogle Scholar
  169. Yamaura T, Tanaka S, Tabata M (1989) Light dependent formation of glandular trichomes and monoterpenes in thyme seedlings. Phytochemistry 28:741–744CrossRefGoogle Scholar
  170. Zellagui A, Belkassam A, Belaidi A, Gherraf N (2012) Environmental impact on the chemical composition and yield of essential oils of Algerian Ruta Montana (Clus.) L and their antioxidant and antibacterial activities. Adv Environ Biol 6:2684–2688Google Scholar
  171. Zeybek N, Zeybek U (1994) Pharmaceutical botany. Ed University Printing House, IzmirGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Laboratory of Plant Biodiversity, Conservation and Enhancement, Faculty of Natural and Life ScienceUniversity of Djillali Liabes Sidi Bel-AbbesSidi Bel-AbbesAlgeria

Personalised recommendations