Chemotaxonomic Survey on the Genus Sedum L. (Crassulaceae) Based on Distribution and Variability of the Epicuticular Wax Constituents

  • Snežana Č. JovanovićEmail author
  • Bojan K. Zlatković
  • Gordana S. Stojanović
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 24)


In this chapter are given general considerations on biosynthesis, chemical composition, function and importance of epicuticular wax constituents, specially their utilization and usefulness in chemotaxonomy. A special attention is given to the components of epicuticular waxes isolated from different representatives of the genus Sedum L. from the territory of Europe, emphasizing the importance of certain classes of compounds for chemotaxonomic purposes and at certain taxonomic levels of classification. Also, the chapter brings out survey of literature data on distribution, classification and phylogenetic relationships of the genus Sedum, as well as consideration of usefulness of alkanes and triterpenoids from epicuticular wax in taxonomical investigations of the family Crassulaceae, with special attention to the genus Sedum.


Sedum L. Epicuticular wax Variability Chemotaxonomy 



The authors are grateful to the Ministry of Education, Science and Technological Development for the financial support through the grant No 172047.


  1. Ardenghi N, Mulch A, Pross J, Niedermeyer EM (2017) Leaf wax n-alkane extraction: an optimised procedure. Org Geochem 113:283–292CrossRefGoogle Scholar
  2. Barthlot W, Neinhuis C, Cutler D et al (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260CrossRefGoogle Scholar
  3. Bojović S, Šarac Z, Nikolić B et al (2012) Composition of n-alkanes in natural populations of Pinus nigra from Serbia—chemotaxonomic implications. Chem Biodivers 9:2761–2774PubMedCrossRefGoogle Scholar
  4. Borisjuk N, Hrmova M, Lopato S (2014) Transcriptional regulation of cuticle biosynthesis. Biotechnol Adv 32:526–540PubMedCrossRefGoogle Scholar
  5. Buschhaus C, Jetter R (2012) Composition and physiological function of the wax layers coating arabidopsis leaves: β-Amyrin negatively affects the intracuticular water barrier. Plant Physiol 160:1120–1129PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bush RT, McInerney FA (2013) Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta 117:161–179CrossRefGoogle Scholar
  7. Carrascoa V, Pintoa LA, Wolff Cordeirob K et al (2014) Antiulcer activities of the hydroethanolic extract of Sedum dendroideum Moc et Sessé ex DC. (balsam). J Ethnopharmacol 158:345–351CrossRefGoogle Scholar
  8. Carrillo-Reyes P, Sosa V, Mort ME (2009) Molecular phylogeny of the Acre clade (Crassulaceae): dealing with the lack of definitions for Echeveria and Sedum. Mol Phylogenet Evol 53:267–276PubMedCrossRefGoogle Scholar
  9. De Melo GO, Malvar Ddo C, Vanderlinde FA et al (2009) Antinociceptive and anti-inflammatory kaempferol glycosides from Sedum dendroideum. J Ethnopharmacol 124:228–232PubMedCrossRefGoogle Scholar
  10. Denton MF (1994) SEM analysis of leaf epicuticular waxes of Sedum section Gormania (Crassulaceae). Brittonia 46:296–308CrossRefGoogle Scholar
  11. Domínguez E, Cuartero J, Heredia A (2011) An overview on plant cuticle biomechanics. Plant Sci 181:77–84PubMedCrossRefGoogle Scholar
  12. Ertaş A, Boğa M, Yılmaz MA, Yeşil Y et al (2014) Chemical compositions by using LC-MS/MS and GC-MS and biological activities of Sedum sediforme (Jacq.) Pau. J Agric Food Chem 62:4601–4609PubMedCrossRefGoogle Scholar
  13. Fernández V, Guzmán-Delgado P, José Graça et al (2016) Cuticle structure in relation to chemical composition: re-assessing the prevailing model. Front Plant Sci 7:427PubMedPubMedCentralGoogle Scholar
  14. Gontcharova SB, Gontcharov AA (2007) Molecular phylogenetics of Crassulaceae. Genes, Genomes Genomics 1:40–46Google Scholar
  15. Gontcharova SB, Artyukova EV, Gontcharov AA (2006) Phylogenetic relationships among members of the subfamily Sedoideae (Crassulaceae) inferred from the ITS region sequences of nuclear rDNA. Russ J Genet 42:654–661CrossRefGoogle Scholar
  16. He A, Wang M, Hao H et al (1998) Hepatoprotective triterpenes from Sedum sarmentosum. Phytochemistry 49:2607–2610CrossRefGoogle Scholar
  17. Herbin GA, Robins PA (1969) Patterns of variation and development in leaf wax alkanes. Phytochemistry 8:1985–1998CrossRefGoogle Scholar
  18. Heredia A (2003) Biophysical and biochemical characteristics of cutin a plant barrier biopolymer. Biochim Biophys Acta 1620:1–7PubMedCrossRefPubMedCentralGoogle Scholar
  19. Jeffree CE (2006) The fine structure of the plant cuticle. In: Riederer M, Müller C (eds) Biology of the plant cuticle. Annual Plant Reviews, vol 23. Blackwell Publishing, Oxford, pp 11–125Google Scholar
  20. Jeffree CE, Baker EA, Holloway PJ (1976) Origins of the fine structure of plant epicuticular waxes. In: Dickinson CH, Preece TF (eds) Microbiology of aerial plant surfaces. Academic Press, London, pp 119–158Google Scholar
  21. Jovanović S (2016) Secondary metabolites of the Sedum L. (Crassulaceae) representatives from the central Balkan Peninsula and their chemotaxonomic significance. Dissertation, University of NišGoogle Scholar
  22. Jovanović S, Zlatković B, Stojanović G (2015a) Distribution and variability of n-Alkanes in Epicuticular waxes of Sedum Species from the Central Balkan Peninsula: chemotaxonomic importance. Chem Biodivers 12:767–780PubMedCrossRefPubMedCentralGoogle Scholar
  23. Jovanović S, Zlatković B, Stojanović G (2015b) The chemical composition of Sedum rupestre L. ssp. rupestre epicuticular waxes: horticultural versus the natural plant habitat. FU Phys Chem Tech 13:77–82CrossRefGoogle Scholar
  24. Jovanović S, Zlatković B, Stojanović G (2016) Chemotaxonomic approach to the central balkan Sedum species based on distribution of triterpenoids in their epicuticular waxes. Chem Biodivers 13:459–465PubMedCrossRefPubMedCentralGoogle Scholar
  25. Jung HJ, Kang HJ, Song YS et al (2008) Anti-inflammatory, anti-angiogenic and anti-nociceptive activities of Sedum sarmentosum extract. J Ethnopharmacol 116:138–143PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kang TH, Pae HO, Yoo JC et al (2000) Antiproliferative effects of alkaloids from Sedum sarmentosum on murine and human hepatoma cell lines. J Ethnopharmacol 70:177–182PubMedCrossRefGoogle Scholar
  27. Kim JH, ‘t Hart H, Stevens JF (1996) Alkaloids of some Asian Sedum species. Phytochemistry 41:1319–1324CrossRefGoogle Scholar
  28. Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Phil Trans R Soc A 367:1487–1509PubMedCrossRefGoogle Scholar
  29. Koch K, Bhushan B, Barthlott W (2008) Diversity of structure, morphology, and wetting of plant surfaces. Soft Matter 4:1943–1963CrossRefGoogle Scholar
  30. Korul’kin DY (2001) Chemical composition of certain Sedum species of Kazakhstan. Chem Nat Compd 37:219–223CrossRefGoogle Scholar
  31. Kunst L, Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax. Prog Lipid Res 42:51–80PubMedCrossRefGoogle Scholar
  32. Kunst L, Samuels L (2009) Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol 12:721–727PubMedCrossRefGoogle Scholar
  33. Lemieux B (1996) Molecular genetics of epicuticular wax biosynthesis. Trends in Plant Sci 1:312–318CrossRefGoogle Scholar
  34. Li WC, Yeung KKA (2014) A comprehensive study of green roof performance from environmental perspective. IJSBE 3:127–134Google Scholar
  35. Lim MS, Choi SH (2017) Estimation of phylogeny of nineteen Sedoideae Species cultivated in Korea inferred from Chloroplast DNA analysis. J Jpn Soc Hortic Sci. Scholar
  36. Maffei M (1994) Discriminant analysis of leaf wax alkanes in the Lamiaceae and four other plant families. Biochem Syst Ecol 22:711–728CrossRefGoogle Scholar
  37. Maffei M (1996a) Chemotaxonomic significance of leaf wax n-Alkanes in the Umbelliferae, Cruciferae and Leguminosae (Subf. Papilionoideae). Biochem Syst Ecol 24:531–545CrossRefGoogle Scholar
  38. Maffei M (1996b) Chemotaxonomic significance of leaf wax alkanes in the Gramineae. Biochem Syst Ecol 24:53–64CrossRefGoogle Scholar
  39. Maffei M, Meregalli M, Scannerini S (1997) Chemotaxonomic significance of surface wax n-Alkanes in the Cactaceae. Biochem Syst Ecol 25:241–253CrossRefGoogle Scholar
  40. Maffei M, Badino S, Rossi S (2004) Chemotaxonomic significance of leaf wax n-alkanes in the Pinales (Coniferales). J Biol Res 1:3–19Google Scholar
  41. Manheim BS Jr, Mulroy TW, Hogness DK, Kerwin JL (1979) Interspecific variation in leaf wax of Dudleya. Biochem Syst Ecol 7:17–19CrossRefGoogle Scholar
  42. Manners GD, Davis DG (1984) Epicuticular wax constituents of North American and European Euphorbia esula biotypes. Phytochemistry 23:1059–1062CrossRefGoogle Scholar
  43. Marin P (2003) Biohemijska i molekularna sistematika. Miroslav Damjanović, Beograd, SrbijaGoogle Scholar
  44. Matas AJ, José Sanz M, Heredia A (2003) Studies on the structure of the plant wax nonacosan-10-ol, the main component of epicuticular wax conifers. Int J Biol Macromol 33:31–35PubMedCrossRefGoogle Scholar
  45. Mayuzumi S, Ohba H (2004) The phylogenetic position of Eastern Asian Sedoideae (Crassulaceae) inferred from chloroplast and nuclear DNA sequences. Syst Bot 29:587–598CrossRefGoogle Scholar
  46. Medina E, Aguiar G, Gómez M et al (2006) Taxonomic significance of the epicuticular wax composition in species of the genus Clusia from Panama. Biochem Syst Ecol 34:319–326CrossRefGoogle Scholar
  47. Mitić Z, Zlatković B, Jovanović S et al (2017) Geographically related variation in epicuticular wax traits of Pinus nigra populations from Southern Carpathians and Central Balkans—taxonomic considerations. Chem Biodivers 13:931–942CrossRefGoogle Scholar
  48. Mitić Z, Zlatković B, Miljković M et al (2017) First insights into micromorphology of needle epicuticular waxes of south-eastern european Pinus nigra J. F. Arnold populations. Iheringia Ser Bot 72:373–379CrossRefGoogle Scholar
  49. Mitić Z, Zlatković B, Jovanović S et al (2018) Diversity of needle n-alkanes, primary alcohols and diterpenes in Balkan and Carpathian native populations of Pinus nigra J. F. Arnold. Biochem Syst Ecol 80:46–54CrossRefGoogle Scholar
  50. Mort ME, Soltis DE, Pamela S. Soltis PE et al (2001) Phylogenetic relationship and evolution of Crassulaceae inferred from matK sequence data. Am J Bot 88:76–91PubMedCrossRefGoogle Scholar
  51. Müller C, Riederer M (2005) Plant surface properties in chemical ecology. J Chem Ecol 31:2621–2651PubMedCrossRefGoogle Scholar
  52. Nahrstedt A, Walther A, Wray V (1982) Sarmentosin epoxide, a new cyanogenic compound from Sedum cepaea. Phytochemistry 21:107–110CrossRefGoogle Scholar
  53. Niu XF, Liu X, Pan L, Qi L (2011) Oleanene triterpenes from Sedum lineare Thunb. Fitoterapia 82:960–963PubMedCrossRefGoogle Scholar
  54. Osborne R, Stevens JF (1996) Epicuticular waxes and Glaucousness of Encephalartos leaves. Phytochemistry 42:1335–1339CrossRefGoogle Scholar
  55. Sakar MK, Petereit F, Nahrstedt A (1993) Two phloroglucinol glucosides, flavan gallates and flavonol glycosides from Sedum sediforme flowers. Phytochemistry 33:171–174CrossRefGoogle Scholar
  56. Seigler DS (1998) Plant secondary metabolism. Springer, Boston, MACrossRefGoogle Scholar
  57. Stanković M, Radojević I, Ćurčić M et al (2012) Evaluation of biological activities of goldmoss stonecrop (Sedum acre L.) Turk J Biol 36:580–588Google Scholar
  58. Stevens JF, ‘t Hart H, Hendriks H, Malingré TM (1992) Alkaloids of some European and Macaronesian Sedoideae and Sempervivoideae (Crassulaceae). Phytochemistry 31:3917–3924CrossRefGoogle Scholar
  59. Stevens JF, ’t Hart H, Hendriks H, Malingré TM (1993) Alkaloids of the Sedum acre-group (Crassulaceae). Plant Syst Evol 185:207–217Google Scholar
  60. Stevens JF, ‘t Hart H, Bolck A et al (1994a) Epicuticular wax composition of some European Sedum Species. Phytochemistry 35:389–399CrossRefGoogle Scholar
  61. Stevens JF, ‘t Hart H, Pouw AJA et al (1994b) Epicuticular waxes of Sedum series Rupestria. Phytochemistry 36:341–348CrossRefGoogle Scholar
  62. Stevens JF, ‘t Hart H, Vanham CHJ et al (1995) Distribution of alkaloids and tannins in the Crassulaceae. Biochem Syst Ecol 23:157–165CrossRefGoogle Scholar
  63. Stevens JF, ‘t Hart H, Elema ET, Bolck A (1996) Flavonoid variation in Eurasian Sedum and Sempervivum. Phytochemistry 41:503–512CrossRefGoogle Scholar
  64. Stojanović G, Jovanović S, Zlatković B (2015) Distribution and taxonomic significance of secondary metabolites occurring in the methanol extracts of the Stonecrops (Sedum L., Crassulaceae) from the Central Balkan Peninsula. Nat Prod Commun 10:941–944PubMedPubMedCentralGoogle Scholar
  65. ‘t Hart H (1991) Evolution and classification of European Sedum species. Flora Mediterranea 1:31–61Google Scholar
  66. ‘t Hart H (1995) The evolution of the Sedum acre group (Crassulaceae). Bocconea 5:119–128Google Scholar
  67. ‘t Hart H (1997) Diversity within Mediterranean Crassulaceae. Lagascalia 19:93–100Google Scholar
  68. ‘t Hart H, van Ham RDHJ, Stevens JF et al (1999) Biosystematic, molecular and phytochemical evidence for the multiple origin of sympetaly in Eurasian Sedoideae (Crassulaceae). Biochem Syst Ecol 27:407–426CrossRefGoogle Scholar
  69. Taylor P (2011) The wetting of leaf surfaces. Curr Opin Colloid In 16:326–334CrossRefGoogle Scholar
  70. Thiede J, Eggli U (2007) Crassualaceae. In: Kubitzki K (ed) Flowering plants eudicots. Springer, Berlin, pp 83–118CrossRefGoogle Scholar
  71. Thuong PT, Kang HJ, Na M et al (2007) Anti-oxidant constituents from Sedum takesimense. Phytochemistry 68:2432–2438PubMedCrossRefPubMedCentralGoogle Scholar
  72. Tomaszewski D, Zielinski J (2014) Epicuticular wax structures on stems and comparison between stemsand leaves—a survey. Flora 209:215–232CrossRefGoogle Scholar
  73. van Maarseveen C, Jetter R (2009) Composition of the epicuticular and intracuticular wax layers on Kalanchoe daigremontiana (Hamet et Perr. de la Bathie) leaves. Phytochemistry 70:899–906PubMedCrossRefGoogle Scholar
  74. Wolbis M (1989) Flavonol glycosides from Sedum album. Phytochemistry 28(8):2187–2189CrossRefGoogle Scholar
  75. Wolbis M, Królikowska M (1988) Flavonol glycosides from Sedum acre. Phytochemistry 21:3941–3943CrossRefGoogle Scholar
  76. Xue D, Zhang X, Lu X et al (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 621Google Scholar
  77. Zlatković B, Mitić Z, Jovanović S et al (2017) Epidermal structures and composition of epicuticular waxes of Sedum album sensu lato (Crassulaceae) in Balkan Peninsula. Plant Biosyst 151:1–11CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Snežana Č. Jovanović
    • 1
    Email author
  • Bojan K. Zlatković
    • 2
  • Gordana S. Stojanović
    • 1
  1. 1.Department of Chemistry, Faculty of Science and MathematicsUniversity of NišNišSerbia
  2. 2.Department of Biology and Ecology, Faculty of Science and MathematicsUniversity of NišNišSerbia

Personalised recommendations