Advertisement

Combined Phylogenetic Analysis in Echinocereus (Cactaceae), the Use of Morphology, and Taxonomic Implications

  • Daniel Sánchez
  • Salvador AriasEmail author
  • Monserrat Vázquez-Sánchez
  • Teresa Terrazas
Chapter
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 24)

Abstract

Phylogenies based on molecular characters has dominated publications rather than those based on morphological characters. Some authors have defended the use of morphology in phylogenetic reconstruction. In Cactaceae few studies have been made combining molecular and morphological characters. A good example about the use of morphology in phylogenetic analysis has been addressed in Echinocereus. Echinocereus is a morphologically diverse genus including 67 species that have been grouped into eight taxonomic sections based on morphological traits. Previous molecular phylogenetic analyses did not show entirely the relationships in Echinocereus species, and did not provide useful characters to recognize clades. Therefore, we performed a combined phylogenetic analysis with a set of 44 morphological characters and six chloroplast DNA sequences. Topologies from parsimony and Bayesian analyses resulted mostly congruent. However, relationships of E. poselgeri did not agree between analyses. A second bayesian analysis using long-branch extraction test resulted in a topology with a morphologically congruent position of E. poselgeri. Parsimony and Bayesian analyses corroborated the monophyly of Echinocereus, which included eight monophyletic groups. The clades did not recover the recent infrageneric classification. As a consequence, a new sectional classification for Echinocereus is proposed based on the eight recovered clades, which are supported by a combination of morphological and molecular characters. An identification key for sections in the genus is included.

Keywords

Combined analyses Echinocereus poselgeri Echinocereeae Long-branch attraction Long-branch extraction Morphology Parsimony Taxonomy 

References

  1. Agnarsson I, Miller JA (2008) Is ACCTRAN better than DELTRAN? Cladistics 24:1032–1038CrossRefGoogle Scholar
  2. Albesiano S, Terrazas T (2012) Cladistic analysis of Trichocereus (Cactaceae: Cactoideae: Trichocereeae) based on morphological data and chloroplast DNA sequences: dedicated to Omar Emilio Ferrari (1936–2010). Haseltonia 17:3–23CrossRefGoogle Scholar
  3. Anderson EF (2001) The cactus family. Timber Press, PortlandGoogle Scholar
  4. Arias S, Terrazas T, Arreola-Nava HJ et al (2005) Phylogenetic relationships in Peniocereus (Cactaceae) inferred from plastid DNA sequence data. J Plant Res 118:317–328PubMedCrossRefPubMedCentralGoogle Scholar
  5. Assis L (2009) Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics. Cladistics 25:528–544CrossRefGoogle Scholar
  6. Assis L, Rieppel O (2011) Are monophyly and synapomorphy the same or different? Revisiting the role of morphology in phylogenetics. Cladistics 27:94–102CrossRefGoogle Scholar
  7. Alves RJV, Machado MD (2007) Is classical taxonomy obsolete? Taxon 56:287–288CrossRefGoogle Scholar
  8. Baker M (2006a) A new florally dimorphic hexaploid, Echinocereus yavapaiensis sp. nov. (section Triglochidiatus, Cactaceae) from central Arizona. Plant Syst Evol 258:63–83CrossRefGoogle Scholar
  9. Baker M (2006b) Circumscription of Echinocereus arizonicus subsp. arizonicus, Phenetic analysis of morphological characters in section Triglochidiatus (Cactaceae) part II.Madroño 53:388–399CrossRefGoogle Scholar
  10. Bárcenas RT, Yesson C, Hawkins JA (2011) Molecular systematics of the Cactaceae. Cladistics 27:470–489CrossRefGoogle Scholar
  11. Berger A (1926) Die entwicklungslinien der Kakteen. Fisher, JenaGoogle Scholar
  12. Bergsten J (2005) A review of long-branch attraction. Cladistics 21:163–193CrossRefGoogle Scholar
  13. Blum W, Felix D, Bauer H (2012) Echinocereus Die Sektion Echinocereus. Der Echinocereenfreund 25:1–336Google Scholar
  14. Blum W, Felix D, Waldeis D (2008) Echinocereus Die Sektion Wilcoxia. Der Echinocereenfreund 21:1–142Google Scholar
  15. Blum W, Lang M, Rischer M, Rutow J (1998) Echinocereus, Monographie. Selbstverlag, AachenGoogle Scholar
  16. Bollback JP (2006) SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinform 7:88Google Scholar
  17. Bravo-Hollis H, Sánchez-Mejorada H (1991) Las Cactáceas de México [The cacti of Mexico], vol 2. Universidad Nacional Autónoma de México, Ciudad de MéxicoGoogle Scholar
  18. Britton NL, Rose JN (1919) The Cactaceae, vol 1. Carnegie Institution of Washington, WashingtonGoogle Scholar
  19. Britton NL, Rose JN (1920) The Cactaceae, vol 2. Carnegie Institution of Washington, WashingtonGoogle Scholar
  20. Britton NL, Rose JN (1922) The Cactaceae, vol 3. Carnegie Institution of Washington, WashingtonGoogle Scholar
  21. Britton NL, Rose JN (1923) The Cactaceae, vol 4. Carnegie Institution of Washington, WashingtonGoogle Scholar
  22. Brown JM, Thomson RC (2017) Bayes factors unmask highly variable information content, bias, and extreme influence in phylogenomic analyses. Syst Biol 66:517–530PubMedPubMedCentralGoogle Scholar
  23. Butterworth CA, Cota-Sanchez JH, Wallace RS (2002) Molecular systematics of tribe Cacteae (Cactaceae: Cactoideae): a phylogeny based on rpl16 intron sequence variation. Syst Botany 27:257–270Google Scholar
  24. Buxbaum F (1951) Morphology of cacti, section I: root and stems. Abbey Garden Press, PasadenaGoogle Scholar
  25. Buxbaum F (1953) Morphology of cacti, section II: flower. Abbey Garden Press, PasadenaGoogle Scholar
  26. Buxbaum F (1955) Morphology of cacti, section III: fruits and seeds. Abbey Garden Press, PasadenaGoogle Scholar
  27. Buxbaum F (1958) The phylogenetic division of the subfamily Cereoideae, Cactaceae. Madroño 14:177–206Google Scholar
  28. Calvente A, Zappi DC, Forest F et al (2011) Molecular phylogeny of tribe Rhipsalideae (Cactaceae) and taxonomic implications for Schlumbergera and Hatiora. Mol Phylogenet Evo 58:456–468CrossRefGoogle Scholar
  29. Cota JH (1993) Pollination syndromes in the genus Echinocereus: a review. Cact Succ J (US) 65:19–26Google Scholar
  30. Cruz MÁ, Arias S, Terrazas T (2016) Molecular phylogeny and taxonomy of the genus Disocactus (Cactaceae), based on the DNA sequences of six chloroplast markers. Willdenowia 46:145–164CrossRefGoogle Scholar
  31. Cunningham WC, Omland KE, Oakley TH (1998) Reconstructing ancestral characters states: a critical reappraisal. Trends Ecol Evol 13:361–366PubMedCrossRefGoogle Scholar
  32. Darriba D, Taboada GL, Doallo R et al (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedPubMedCentralCrossRefGoogle Scholar
  33. de Carvalho MR (1996) Higher-level elasmobranch phylogeny, basal squaleans, and paraphyly. In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of Fishes 3. Academic Press, San Diego, pp 593–660Google Scholar
  34. De Pinna MG (1991) Concepts and tests of homology in the cladistic paradigm. Cladistics 7:367–394CrossRefGoogle Scholar
  35. de Queiroz A, Donoghue MJ, Kim J (1995) Separate versus combined analysis of phylogenetic evidence. Ann Rev EcolSyst 26:657–681CrossRefGoogle Scholar
  36. Delsuc F, Henner B, Hervé P (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361PubMedCrossRefGoogle Scholar
  37. Demaio PH, Barfuss MH, Kiesling R et al (2011) Molecular phylogeny of Gymnocalycium (Cactaceae): Assessment of alternative infrageneric systems, a new subgenus, and trends in the evolution of the genus. Am J Bot 98:1841–1854PubMedCrossRefGoogle Scholar
  38. Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny, implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 92:1177–1188PubMedCrossRefGoogle Scholar
  39. Endler J, Buxbaum F (1974) Die Pflanzenfamilie der Kakteen, 3rd edn. A. Philler Verlag, MidenGoogle Scholar
  40. Engelmann G (1848) Botanical appendix. In: Wislizenus FA (ed) Memoir of a tour to Northern Mexico, connected with Col. Doniphan’s Expedition, in 1846 and 1847, Tippin and Streeper, Washington, pp 87–115Google Scholar
  41. Farris J (1979) The information content on the phylogenetic system. Syst Zool 28:483–519CrossRefGoogle Scholar
  42. Fuentes M (2004) Anatomía floral de algunas especies de Pachycereeae (Cactaceae) [Floral anatomy of some Pachycereeae species] (Unpublished bachelor dissertation). Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, TlalnepantlaGoogle Scholar
  43. Gibson AC (1973) Comparative anatomy of secondary xylem in Cactoideae (Cactaceae). Biotropica 5:29–65CrossRefGoogle Scholar
  44. Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, CambridgeCrossRefGoogle Scholar
  45. Goloboff PA, Farris J, Nixon K (2008) T.N.T. Tree analysis using new technology. Cladistics 24:774–786CrossRefGoogle Scholar
  46. Guerrero PC, Arroyo MTK, Bustamante RO et al (2011) Phylogentics and predictive distribution modeling provide insights into the divergence of Eriosyce subgen. Neoporteria (Cactaceae). Plant Syst Evol 297:113–128CrossRefGoogle Scholar
  47. Hernández-Hernández T, Hernández HM, De-Nova JA et al (2011) Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). Am J Bot 98:44–61PubMedCrossRefPubMedCentralGoogle Scholar
  48. Hernández-Ledesma P, Bárcenas RT (2017) Phylogenetic utility of the trnH–psbA IGR and stem-loop diversity of the 3′ UTR in Cactaceae (Caryophyllales). Plant Syst Evol 1–17Google Scholar
  49. Hughes CE, Lewis GP, Yomona AD et al (2004) Maraniona. A new dalbergioid legume genus (Leguminosae, Papilionoideae) from Peru. Syst Bot 29:366–374CrossRefGoogle Scholar
  50. Hunt DR (2012) Taxonomic implications of DNA studies relating to Cactaceae subfam. Cactoideae. Bull Int Cactaceae Syst Group 26:3–20Google Scholar
  51. Hunt DR (2016) CITES Cactaceae checklist, 3rd edn. DH Books, Milborne PortGoogle Scholar
  52. Hunt DR, Taylor NP, Charles G (2006) The new cactus lexicon. DH Books, Milborne PortGoogle Scholar
  53. Jenner R (2004) Accepting partnership by submission? Morphological phylogenetics in a molecular millenium. Syst Biol 53:333–342PubMedCrossRefGoogle Scholar
  54. Kluge AG (1989) A concern for evidence and phylogenetic hypothesis for relationships among Epicrates (boide, Serpentes). Syst Zool 38:1–25CrossRefGoogle Scholar
  55. Knopf P, Schulz C, Little DP et al (2012) Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28:271–299CrossRefGoogle Scholar
  56. Kolaczkowski B, Thornton JW (2009) Long-branch attraction bias and inconsistency in Bayesian phylogenetics. PLoS ONE 4:e7891PubMedPubMedCentralCrossRefGoogle Scholar
  57. Korotkova N, Borsch T, Arias S (2017) A phylogenetic framework for the Hylocereeae (Cactaceae) and implications for the circumscription of the genera. Phytotaxa 327:1–46CrossRefGoogle Scholar
  58. Korotkova N, Borsch T, Quandt D et al (2011) What does it take to resolve relationships and to identify species with molecular markers? An example from the epiphytic Rhipsalideae (Cactaceae). Am J Bot 98:1549–1572PubMedCrossRefGoogle Scholar
  59. Larridon I, Walter HE, Guerrero PC et al (2015) An integrative approach to understanding the evolution and diversity of Copiapoa (Cactaceae), a threatened endemic Chilean genus from the Atacama Desert. Am J Bot 102:1506–1520PubMedCrossRefGoogle Scholar
  60. Lartillot N, Brinkmann H, Philippe H (2007) Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC EvolBiol 7:S4CrossRefGoogle Scholar
  61. Lartillot N, Philippe H (2004) A bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21:1095–1109PubMedCrossRefGoogle Scholar
  62. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925PubMedCrossRefPubMedCentralGoogle Scholar
  63. Loza-Cornejo S, Terrazas T (1996) Anatomía del tallo y raíz de dos especies de Wilcoxia Britton & Rose (Cactaceae) del noreste de México. Bol Soc Bot México 59:13–23Google Scholar
  64. Luna E, Mishler BD (1996) El concepto de homología filogenética y la selección de caracteres taxonómicos. Bol Soc Bot México 59:131–146Google Scholar
  65. Majure LC, Puente R, Griffith MP et al (2012) Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution. Am J Bot 99:847–864PubMedCrossRefPubMedCentralGoogle Scholar
  66. Nixon KC (2002) WinClada, version 1.00. 08. Ithaca, NYGoogle Scholar
  67. Nixon KC, Carpenter JM (1996) On simultaneous analysis. Cladistics 12:221–241CrossRefGoogle Scholar
  68. Nixon KC, Carpenter JM (2000) On the other “phylogenetic systematics”. Cladistics 16:298–318Google Scholar
  69. Nixon KC, Ochoterena H (2000) Taxonomía tradicional, cladística y construcción de hipótesis filogenéticas. In: Hernández HM, García Aldrete AN, Álvarez F et al (eds) Enfoques contemporáneos para el estudio de la biodiversidad. Universidad Nacional Autónoma de México & Fondo de Cultura Económica, Ciudad de México, pp 15–37Google Scholar
  70. Norup MV, Dransfield J, Chase MW et al (2006) Homoplasious character combinations and generic delimitation: a case study from the Indo-Pacific arecoid palms (Arecaceae: Areceae). Am J Bot 93:1065–1080PubMedCrossRefPubMedCentralGoogle Scholar
  71. Nyffeler R (2002) Phylogenetic relationship in the cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. Am J Bot 89:312–326PubMedCrossRefPubMedCentralGoogle Scholar
  72. Nyffeler R, Eggli U (2010) A farewell to dated ideas and concepts: molecular phylogenetics and revised suprageneric classification of the family Cactaceae. Schumannia 6:1–42Google Scholar
  73. Nylander JAA, Ronquist F, Huelsenbeck JP et al (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67PubMedCrossRefPubMedCentralGoogle Scholar
  74. Ochoterena H (2009) Homology in coding and non-coding DNA sequences, a parsimony perspective. Plant Syst Evol 282:151–168CrossRefGoogle Scholar
  75. Patterson C (1982) Morphological characters and homology. Problems of phylogenetic reconstruction. Academic Press, LondonGoogle Scholar
  76. Pol D, Siddall ME (2001) Biases in maximum likelihood and parsimony, a simulation approach to a 10-taxon case. Cladistics 17:266–281CrossRefGoogle Scholar
  77. Richards R (2003) Character individuation in phylogenetic inference. Philo Sci 70:264–279CrossRefGoogle Scholar
  78. Rindal E, Brower AV (2011) Do model-based phylogenetic analyses perform better than parsimony? A test with empirical data. Cladistics 27:331–334CrossRefGoogle Scholar
  79. Ritz CM, Martins L, Mecklenburg R et al (2007) The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American Mountain cacti. Am J Bot 94:1321–1332PubMedCrossRefPubMedCentralGoogle Scholar
  80. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3, Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefPubMedCentralGoogle Scholar
  81. Sánchez D, Arias S, Terrazas T (2013) Análisis morfométrico de las especies de Echinocereus sección Triglochidiati (Cactaceae) en México. Brittonia 65:368–385CrossRefGoogle Scholar
  82. Sánchez D, Arias S, Terrazas T (2014) Phylogenetic relationships in Echinocereus (Cactaceae, Cactoideae). Syst Bot 39:1183–1196CrossRefGoogle Scholar
  83. Sánchez D, Grego-Valencia D, Terrazas T et al (2015) How and why does the areole meristem move in Echinocereus (Cactaceae)? Ann Bot 115:19–26PubMedCrossRefGoogle Scholar
  84. Sánchez D, Terrazas T, Grego-Valencia D, Arias S (2018) Phylogeny in Echinocereus (Cactaceae) based on morphological and molecular evidence: taxonomic implications. Syst Biodivers 1:28–44CrossRefGoogle Scholar
  85. Schlumpberger BO, Renner SS (2012) Molecular phylogenetics of Echinopsis (Cactaceae), polyphyly at all levels and convergent evolution of pollination modes and growth forms. Am J Bot 99:1335–1349PubMedCrossRefGoogle Scholar
  86. Schumann K (1899) Gesamtbeschreibung der Kakteen. Neudamm, BerlinCrossRefGoogle Scholar
  87. Scotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction, the role of morphology. Syst Biol 52:539–548PubMedCrossRefGoogle Scholar
  88. Simmons MP, Ochoterena H, Carr TG (2001) Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analyses. Syst Biol 50:454–462PubMedCrossRefGoogle Scholar
  89. Smith ND, Turner AH (2005) Morphology’s role in phylogeny reconstruction: perspectives from paleontology. Syst Biol 54:166–173PubMedCrossRefGoogle Scholar
  90. Tapia HJ, Bárcenas-Argüello ML, Terrazas T et al (2018) Phylogeny and Circumscription of Cephalocereus (Cactaceae) based on molecular and morphological evidence. Syst Bot 42:709–723CrossRefGoogle Scholar
  91. Taylor NP (1985) The genus Echinocereus. Kew Magazine Monograph, MiddlesexGoogle Scholar
  92. Taylor NP (1993) Ulteriori studi su Echinocereus. Piante Grasse 13:79–96Google Scholar
  93. Vargas-Luna MD, Hernández-Ledesma P, Majure LC et al (2018) Splitting Echinocactus: morphological and molecular evidence support the recognition of Homalocephala as a distinct genus in the Cacteae. PhytoKeys 111:31–59CrossRefGoogle Scholar
  94. Vázquez-Sánchez M, Sánchez D, Terrazas T et al (2019) Polyphyly at the iconic cactus genus Turbinicarpus (Cactaceae) and its generic circumscription. Bot J Linean Soc 190:405–420CrossRefGoogle Scholar
  95. Vázquez-Sánchez M, Terrazas T (2011) Stem and wood allometric relationships in Cacteae (Cactaceae). Trees 25:755–767CrossRefGoogle Scholar
  96. Vázquez-Sánchez M, Terrazas T, Arias S et al (2013) Molecular phylogeny, origin and taxonomic implications of the tribe Cacteae (Cactaceae). Syst Biodivers 11:103–116CrossRefGoogle Scholar
  97. Walker JF, Yang Y, Feng T et al (2018) From cacti to carnivores: improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. Am J Bot 105:446–462PubMedCrossRefGoogle Scholar
  98. Wallace RS (1995) Molecular systematic study of the Cactaceae: using chloroplast DNA variation to elucidate cactus phylogeny. Bradleya 13:1–12CrossRefGoogle Scholar
  99. Wallace RS, Gibson AC (2002) Evolution and systematics. In: Nobel PS (ed) Cacti biology and uses. University of California Press, Berkeley, pp 1–21Google Scholar
  100. Wheeler QD (2004) Taxonomic triage and the poverty of phylogeny. Philos Trans Royal Soc B: Biol Sci 359:571–583CrossRefGoogle Scholar
  101. Wiley EO, Lieberman BS (2011) Phylogenetics: theory and practice of phylogenetic systematics. Wiley, HobokenCrossRefGoogle Scholar
  102. Winther RG (2009) Character analysis in cladistics: abstraction, reification and the search for objectivity. Acta Biotheor 57:129–162PubMedCrossRefPubMedCentralGoogle Scholar
  103. Wipfler B, Pohl H, Yavorskaya MI et al (2016) A review of methods for analysing insect structures—the role of morphology in the age of phylogenomics. Curr Opin Insect Sci 18:60–68PubMedCrossRefPubMedCentralGoogle Scholar
  104. Wortley AH, Rudall PJ, Harris DJ et al (2005) How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Syst Biol 54:697–709PubMedCrossRefPubMedCentralGoogle Scholar
  105. Wortley AH, Scotland RW (2006) The effect of combining molecular and morphological data in published phylogenetic analyses. Syst Biol 55:677–685PubMedCrossRefPubMedCentralGoogle Scholar
  106. Yang Y, Moore MJ, Brockington SF et al (2015) Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Mol Biol Evol 32:2001–2014PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel Sánchez
    • 1
  • Salvador Arias
    • 2
    Email author
  • Monserrat Vázquez-Sánchez
    • 3
  • Teresa Terrazas
    • 4
  1. 1.CONACYT—Laboratorio Nacional de Identificación y Caracterización VegetalCentro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de GuadalajaraZapopanMexico
  2. 2.Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de MéxicoCoyoacánMexico
  3. 3.Departamento de BotánicaInstituto de Biología, Universidad Nacional Autónoma de MéxicoCoyoacánMexico
  4. 4.Colegio de PostgraduadosTexcocoMexico

Personalised recommendations