Surgical Equipment, Supplies, and Setup for Transoral Thyroid and Parathyroid Surgery via the Vestibular Approach

  • Young Jun Chai
  • Özer Makay
  • Che-Wei Wu
  • Hoon Yub Kim
  • Gianlorenzo DionigiEmail author


Transoral thyroid and parathyroid surgery is made possible with the use of endoscopic and robotic technology through a novel, scarless approach in the lower vestibulum of the oral cavity (lower lip). The evolution of thyroid surgery from a large incision in the neck to remote-access, scarless approaches has in large part been made possible by advancements in laparoscopic and robotic technology, devices, and accessories. While these tools have been used for remote-access thyroid surgery from various approaches from the chest, axilla, and neck areas, there are unique challenges with the transoral approach that require familiarity with the requisite instrumentation. In this chapter, we highlight pre- and postoperative aspects of transoral endoscopic thyroidectomy vestibular approach (TOETVA) in patient management, operative room setup, and instrumentation. As with any new procedure, proper instrumentation and familiarity with all elements of the operation are of paramount importance.


Endoscopic thyroidectomy TOETVA Thyroidectomy Transoral Transoral endoscopic thyroidectomy Transoral neck surgery 

Supplementary material

Video 7.1

Insertion of Veress needle to inject epinephrine-saline solution (MP4 11774 kb)

Video 7.2

Insertion of mosquito and Kelly clamps to create working space (MP4 27912 kb)

Video 7.3

Insertion of vascular tunneler deep to the sternal notch to create working space (MP4 17129 kb)

Video 7.4

Dissection of soft tissue to identify the left recurrent laryngeal nerve at the entry point using dissector. The left thyroid gland is hold upward (MP4 7440 kb)

Video 7.5

Putting the specimen into the plastic bag. The bag is introduced and pulled out through the midline trocar (MP4 18317 kb)


  1. 1.
    Agrawal N, Evasovich MR, Kandil E, et al. Indications and extent of central neck dissection for papillary thyroid cancer: an American head and neck society consensus statement. Head Neck. 2017;37:1267–79.Google Scholar
  2. 2.
    Carty SE, Cooper DS, Doherty GM, et al. Consensus statement on the terminology and classification of central neck dissection for thyroid cancer. Thyroid. 2009;19(11):1153–8.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Orloff LA, Kuppersmith RB. American thyroid association’s central neck dissection terminology and classification for thyroid cancer consensus statement. Otolaryngol Head Neck Surg. 2010;142(1):4–5.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Hartl DM, Travagli JP. Central compartment neck dissection for well-differentiated thyroid cancer: a surgical technique. World J Surg. 2011;35:1553–9.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Pai S, Tufano RP. Central compartment lymph node dissection. Oper Tech Otolaryngol. 2009;20:39–43.Google Scholar
  6. 6.
    Kandil E, Abdelghani S, Friedlander P, et al. Motor and sensory branching of the recurrent laryngeal nerve in thyroid surgery. Surgery. 2011;150(6):1222–7.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Armstrong WG, HInton JW. Multiple divisions of the recurrent laryngeal nerve. An anatomic study. AMA Arch Surg. 1951;62:532–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Pereira JA, Jimeno J, Miquel J, et al. Nodal yield, morbidity, and recurrence after central neck dissection for papillary thyroid carcinoma. Surgery. 2005;138:1095–100.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Henry JH, Gramatic L, Denizot A, et al. Morbidity of prophylactic lymph node dissection in the central neck area in patients with papillary thyroid carcinoma. Langenbeck’s Arch Surg. 1998;282:167–9.Google Scholar
  10. 10.
    Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–33.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Kouvaraki MA, Lee JE, Shapiro SE, et al. Preventable reoperations for persistent and recurrent papillary thyroid carcinoma. Surgery. 2004;136:1183–91.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hamming JH, Roukema JA. Management of regional lymph nodes in papillary, follicular, and medullary thyroid cancer. Textbook of endocrine surgery. Philadelphia/London: W.B. Saunders; 1997. p. 155–66.Google Scholar
  13. 13.
    Mizrachi A, Shaha AR. Lymph node dissection for differentiated thyroid cancer. Mol Imaging Radionucl Ther. 2017;26(Supp 1):10–5.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Gambardella C, Tartaglia E, Nunziata A, et al. Clinical significance of prophylactic central compartment neck dissection in the treatment of clinically node-negative papillary thyroid cancer patients. World J Surg Oncol. 2016;14(1):247.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Selberherr A, Riss P, Scheduba C, et al. Prophylactic “first-step” central neck dissection (level 6) does not increase morbidity after (total) thyroidectomy. Ann Surg Oncol. 2016;23(12):4016–22.PubMedPubMedCentralGoogle Scholar
  16. 16.
    McHenry CR, Rosen IB, Walfish PG. Prospective management of nodal metastases in differentiated thyroid cancer. Am J Surg. 1991;20:854.Google Scholar
  17. 17.
    Grebe SK, Hay ID. Thyroid cancer nodal metastases: biologic significant and therapeutic considerations. Surg Oncol Clin N Am. 1996;5:43–63.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Calo PG, Pisano G, Medas F, et al. Total thyroidectomy without prophylactic central neck dissection in clinically node-negative papillary thyroid cancer: is it adequate treatment? World J Surg Oncol. 2014;12:153.Google Scholar
  19. 19.
    Truran P, Harrison B. Central neck dissection in the treatment of well-differentiated thyroid cancer. Int J Endocr Oncol. 2015;2(4):291–9.Google Scholar
  20. 20.
    Wang TS, Cheung K, Farrokhyar F, et al. A meta-analysis of the effect of prophylactic central compartment neck dissection on locoregional recurrence rates in patients with papillary thyroid cancer. Ann Surg Oncol. 2013;20(11):3477–83.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Goepfert RP, Clayman GL. Management of the central compartment in differentiated thyroid carcinoma. Eur J Surg Oncol. 2017;
  22. 22.
    Mirallie E, Visset J, Sagan C, et al. Localization of cervical node metastasis of papillary thyroid carcinoma. World J Surg. 1999;23:970–3.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Goropoulos A, Karamoshos K, Chrostodoulou A, et al. Efstratiou I: value of the cervical compartments in the surgical treatment of papillary thyroid carcinoma. World J Surg. 2004;28(12):1275–81.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Randolph GW, Duh QY, Heller KS, et al. The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension. Thyroid. 2012;22:1144–52.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sessa L, Lombardi CP, De Crea C, et al. Risk factors for central neck lymph node metastases in micro- versus macro- clinically node negative papillary thyroid carcinoma. World J Surg. 2018;42(3):623–9.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Spriano G, Ruscito P, Pellini R, et al. Pattern of regional metastases and prognostic factors in differentiated thyroid carcinoma. Acta Otorhinolaryngol Ital. 2009;29(6):312–6.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Wells SA, Asa SL, Dralle H, et al. Revised American thyroid association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.27.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Lin JD, Chao TC. Follicular thyroid carcinoma: from diagnosis to treatment. Endocr J. 2006;53(4):441–8.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Lin JD, Liou MJ, Chao TC, et al. Prognostic variables of papillary and follicular thyroid carcinoma patients with lymph node metastases and without distant metastases. Endocr Relat Cancer. 1999;6(1):109–15.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Coburn MC, Wanebo JH. Prognostic factors and management considerations in patients with cervical metastases of thyroid cancer. Am J Surg. 1992;164(6):671–6.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Guo P, Tang Z, Ding Z, et al. Transoral endoscopic thyroidectomy with central neck dissection: experimental studies on human cadavers. Chin Med J. 2014;127(6):1067–70.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Anuwong A, Kim HY, Dionigi G. Transoral endoscopic thyroidectomy using vestibular approach: updates and evidences. Gland Surg. 2017;6:277–84.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Russell JO, Clark J, Noureldine SI, et al. Transoral thyroidectomy and parathyroidectomy – a North American series of robotic and endoscopic transoral approaches to the central neck. Oral Oncol. 2017;71:75–80.Google Scholar
  34. 34.
    Benhidjeb T. Transoral endoscopic thyroidectomy with central neck dissection. Chin Med J. 2015;128(13):1838.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Anuwong A. Transoral endoscopic thyroidectomy vestibular approach: a series of the first 60 human cases. World J Surg. 2016;40:491–7.Google Scholar
  36. 36.
    Razavi CR, Fondong A, Tufano RP, et al. Central neck dissection via the transoral approach. 2017;
  37. 37.
    Dionigi G, Lavazza M, Wu C-W, et al. Transoral thyroidectomy: why is it needed? Gland Surg. 2017;6:272–6.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Razavi CR, Russell JO. Indications and contraindications to transoral thyroidectomy. Ann Thyroid. 2017;2(5). pii: 12. Epub 2017 Oct 31. PubMed PMID: 29388614; PubMed Central PMCID: PMC5788189.
  39. 39.
    Kim HY, Chai YJ, Dionigi G, et al. Transoral robotic thyroidectomy: lessons learned from an initial consecutive series of 24 patients. Surg Endosc. 2017;32(2):688–94.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Dionigi G, Tufano RP, Russell J, et al. Transoral thyroidectomy: advantages and limitations. J Endocrinol Investig. 2017;40(11):1259–63. Epub 2017 Apr 21 PubMed PMID: 28432675.CrossRefGoogle Scholar
  41. 41.
    Dionigi G, Chai YJ, Tufano RP, et al. Transoral endoscopic thyroidectomy via a vestibular approach: why and how? Endocrine. 2017; [Epub ahead of print] PubMed PMID: 29039144.
  42. 42.
    Anuwong A, Ketwong K, Jitpratoom P, et al. Safety and outcomes of the transoral endoscopic thyroidectomy vestibular approach. JAMA Surg. 2018;153(1):21–7.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Wang Y, Xie QP, Yu X, et al. Preliminary experience with transoral endoscopic thyroidectomy via vestibular approach: a report of 150 cases in a single center. Zhonghua Wai Ke Za Zhi. 2017;55(8):587–91.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Chai YJ, Chung JK, Anuwong A, et al. Transoral endoscopic thyroidectomy for papillary thyroid microcarcinoma: initial experience of a single surgeon. Ann Surg Treat Res. 2017;93(2):70–5.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Anuwong A, Sasanakietkul T, Jitpratoom P, et al. Transoral endoscopic thyroidectomy vestibular approach (TOETVA): indications, techniques, and results. Surg Endosc. 2018;32(1):456–65.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Chai UJ, Kim HY, Kim HK, et al. Comparative analysis of 2 robotic thyroidectomy procedures: transoral versus bilateral axillo-breast approach. Head Neck. 2017; [Epub ahead of print] PubMed PMID: 29240281.
  47. 47.
    Dionigi G, Bacuzzi A, Lavazza M, et al. Transoral endoscopic thyroidectomy: preliminary experience in Italy. Updat Surg. 2017;69(2):225–34.Google Scholar
  48. 48.
    Richmon JD, Kim HY. Transoral robotic thyroidectomy (TORT): procedures and outcomes. Gland Surg. 2017;6(3):285–9.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Stack BC Jr, Ferris RL, Goldenberg D, American thyroid association surgical affairs committee, et al. American thyroid association consensus review and statement regarding the anatomy, terminology, and rationale for lateral neck dissection in differentiated thyroid cancer. Thyroid. 2012;22(5):501–8.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Park JO, Kim CS, Song JN, et al. Transoral endoscopic thyroidectomy via the tri-vestibular routes: results of a preclinical cadaver feasibility study. Eur Arch Otorhinolaryngol. 2014;271(12):3269–75.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Lee HY, Richmon JD, Walvekar RR, et al. Robotic transoral periosteal thyroidectomy (TOPOT): experience in two cadavers. J Laparoendosc Adv Surg Tech A. 2015;25(2):139–42.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Kim HK, Chai YJ, Lee HY, Kim HY, Dionigi G. Comparing the safety of harmonic ACE and ACE+ around the recurrent laryngeal nerve in swine models. Ann Surg Treat Res. 2018;94(6):285–90. Epub 2018 May 29. PubMed PMID: 29854705; PubMed Central PMCID: PMC5976568.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Zhao Y, Li C, Wang T, Zhou L, Liu X, Xin J, Li S, Sun H, Dionigi G. Translational study to standardize the safe use of bipolar forceps, LigaSure, Sonicision and PlasmaBlade around the recurrent laryngeal nerve in thyroid surgery. Surg Technol Int. 2018;31. pii: sti32/990. [Epub ahead of print] PubMed PMID: 29689591.Google Scholar
  54. 54.
    Dionigi G, Wu CW, Kim HY, Liu X, Liu R, Randolph GW, Anuwong A. Safety of energy based devices for hemostasis in thyroid surgery. Gland Surg. 2016;5(5):490–4. Review. PubMed PMID: 27867863; PubMed Central PMCID: PMC5106374.CrossRefGoogle Scholar
  55. 55.
    Kwak HY, Dionigi G, Kim D, Lee HY, Son GS, Lee JB, Bae JW, Kim HY. Thermal injury of the recurrent laryngeal nerve by THUNDERBEAT during thyroid surgery: findings from continuous intraoperative neuromonitoring in a porcine model. J Surg Res. 2016;200(1):177–82. Epub 2015 Jul 6. PubMed PMID: 26227673.CrossRefPubMedGoogle Scholar
  56. 56.
    Wu CW, Chai YJ, Dionigi G, Chiang FY, Liu X, Sun H, Randolph GW, Tufano RP, Kim HY. Recurrent laryngeal nerve safety parameters of the Harmonic Focus during thyroid surgery: porcine model using continuous monitoring. Laryngoscope. 2015;125(12):2838–45. Epub 2015 Jul 21. PubMed PMID: 26198968.CrossRefPubMedGoogle Scholar
  57. 57.
    Lin YC, Dionigi G, Randolph GW, Lu IC, Chang PY, Tsai SY, Kim HY, Lee HY, Tufano RP, Sun H, Liu X, Chiang FY, Wu CW. Electrophysiologic monitoring correlates of recurrent laryngeal nerve heat thermal injury in a porcine model. Laryngoscope. 2015;125(8):E283–90. Epub 2015 May 22. PubMed PMID: 26010439.CrossRefPubMedGoogle Scholar
  58. 58.
    Dionigi G, Van Slycke S, Rausei S, Boni L, Dionigi R. Parathyroid function after open thyroidectomy: a prospective randomized study for ligasure precise versus harmonic FOCUS. Head Neck. 2013;35(4):562–7. Epub 2012 Jun 19. PubMed PMID: 22715020.CrossRefPubMedGoogle Scholar
  59. 59.
    Dionigi G, Boni L, Rausei S, Frattini F, Ferrari CC, Mangano A, Leotta A, Franchin M. The safety of energy-based devices in open thyroidectomy: a prospective, randomised study comparing the LigaSure™ (LF1212) and the Harmonic® FOCUS. Langenbeck’s Arch Surg. 2012;397(5):817–23. Epub 2012 Jan 10. PubMed PMID: 22230963.CrossRefGoogle Scholar
  60. 60.
    Dionigi G. Energy based devices and recurrent laryngeal nerve injury: the need for safer instruments. Langenbeck’s Arch Surg. 2009;394(3):579–80; author reply 581-6. Epub 2008 Dec 24. PubMed PMID: 19107506.
  61. 61.
    Witzel K, Benhidjeb T. Monitoring of the recurrent laryngeal nerve in totally endoscopic thyroid surgery. Eur Surg Res. 2009;43(2):72–6. Epub 2009 May 27. PubMed PMID: 19478487.CrossRefPubMedGoogle Scholar
  62. 62.
    Inabnet WB 3rd, Suh H, Fernandez-Ranvier G. Transoral endoscopic thyroidectomy vestibular approach with intraoperative nerve monitoring. Surg Endosc. 2017;31(7):3030. Epub 2016 Nov 10. PubMed PMID: 27834022.CrossRefPubMedGoogle Scholar
  63. 63.
    Chen HK, Chen CL, Wen KS, Lin YF, Lin KY, Uen YH. Application of transoral continuous intraoperative neuromonitoring in natural orifice transluminal endoscopic surgery for thyroid disease: a preliminary study. Surg Endosc. 2018;32(1):517–25. Epub 2017 Jun 22. PubMed PMID: 28643050.CrossRefPubMedGoogle Scholar
  64. 64.
    Randolph GW, Dralle H, International Intraoperative Monitoring Study Group, Abdullah H, Barczynski M, Bellantone R, Brauckhoff M, Carnaille B, Cherenko S, Chiang FY, Dionigi G, Finck C, Hartl D, Kamani D, Lorenz K, Miccolli P, Mihai R, Miyauchi A, Orloff L, Perrier N, Poveda MD, Romanchishen A, Serpell J, Sitges-Serra A, Sloan T, Van Slycke S, Snyder S, Takami H, Volpi E. Woodson G. Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: international standards guideline statement. Laryngoscope. 2011;121(Suppl 1):S1–16. Review. PubMed PMID: 21181860.CrossRefPubMedGoogle Scholar
  65. 65.
    Zhang D, Fu Q, Dionigi G, Wang T, Xin J, Zhang J, Xue G, Li H, Sun H. Intraoperative neural monitoring in endoscopic thyroidectomy via bilateral areola approach. Surg Laparosc Endosc Percutan Tech. 2018;28(5):303–8. PubMed PMID: 29889110.CrossRefPubMedGoogle Scholar
  66. 66.
    Zhang D, Li S, Dionigi G, Zhang J, Wang T, Zhao Y, Xue G, Sun H. Stimulating and dissecting instrument for transoral endoscopic thyroidectomy: proof of concept investigation. Surg Endosc. 2019; [Epub ahead of print] PubMed PMID: 31218426.
  67. 67.
    Zhang D, Li S, Dionigi G, Wang T, Zhang J, Xue G, Sun H. Feasibility of continuous intraoperative neural monitoring during transoral endoscopic thyroidectomy vestibular approach in a porcine model. J Laparoendosc Adv Surg Tech A. 2018; [Epub ahead of print] PubMed PMID: 29746219.
  68. 68.
    Barczyński M, Randolph GW, Cernea CR, Dralle H, Dionigi G, Alesina PF, Mihai R, Finck C, Lombardi D, Hartl DM, Miyauchi A, Serpell J, Snyder S, Volpi E, Woodson G, Kraimps JL, Hisham AN, International Neural Monitoring Study Group. External branch of the superior laryngeal nerve monitoring during thyroid and parathyroid surgery: International Neural Monitoring Study Group standards guideline statement. Laryngoscope. 2013;123(Suppl 4):S1–14. Review. PubMed PMID: 23832799.CrossRefPubMedGoogle Scholar
  69. 69.
    Dionigi G, Kim HY, Randolph GW, Wu CW, Sun H, Liu X, Barczynski M, Chiang FY. Prospective validation study of Cernea classification for predicting EMG alterations of the external branch of the superior laryngeal nerve. Surg Today. 2016l;46(7):785–91. Epub 2015 Sep 11. PubMed PMID: 26362419.CrossRefPubMedGoogle Scholar
  70. 70.
    Vidal Fortuny J, Sadowski SM, Belfontali V, Guigard S, Poncet A, Ris F, Karenovics W, Triponez F. Randomized clinical trial of intraoperative parathyroid gland angiography with indocyanine green fluorescence predicting parathyroid function after thyroid surgery. Br J Surg. 2018;105(4):350–7. Epub 2018 Feb 6. PubMed PMID: 29405252; PubMed Central PMCID: PMC6084300.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Young Jun Chai
    • 1
  • Özer Makay
    • 2
  • Che-Wei Wu
    • 3
  • Hoon Yub Kim
    • 4
    • 5
  • Gianlorenzo Dionigi
    • 6
    Email author
  1. 1.Department of SurgerySeoul National University Seoul Metropolitan Government Boramae Medical CenterSeoulSouth Korea
  2. 2.Division of Endocrine SurgeryEge University HospitalBornova, IzmirTurkey
  3. 3.Department of OtorhinolaryngologyKaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University Hospital, Faculty of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
  4. 4.Department of SurgeryKorea University College of MedicineSeoulSouth Korea
  5. 5.Korea University HospitalSeoulSouth Korea
  6. 6.Division of Endocrine and Minimally Invasive SurgeryUniversity of MessinaVareseItaly

Personalised recommendations