Transoral Management of Indeterminate Thyroid Nodules

  • Insoo SuhEmail author
  • Quan-Yang Duh


Transoral thyroidectomy has gained adoption and acceptance at a relatively quick pace over the past several years. The indications for transoral thyroidectomy continue to expand as the technique is increasingly adopted. One of the currently accepted indications for transoral thyroidectomy is the so-called “indeterminate” thyroid nodule—those that are found to have atypical follicular-patterned cells on fine-needle aspiration biopsy and are associated with a 6–40% risk of malignancy. This chapter introduces the transoral vestibular approach (TOETVA/TORTVA) management implications of indeterminate thyroid nodules, specifically those with Bethesda class III or IV cytology. Current advances in molecular genetic testing of biopsy samples are summarized. The transoral thyroidectomy approach is described, with specific focus on the most relevant issues to the management of indeterminate thyroid nodules such as nodule size, implications for an eventual diagnosis of malignancy, and surgeon learning curve.


Transoral thyroidectomy Remote access thyroidectomy Thyroid nodule Fine-needle aspiration biopsy Atypia of undetermined significance Follicular lesion of undetermined significance Follicular neoplasm Hurthle cell neoplasm Thyroid cancer Surgical innovation 


  1. 1.
    Anuwong A. Transoral endoscopic thyroidectomy vestibular approach: a series of the first 60 human cases. World J Surg. 2016;40(3):491–7.CrossRefGoogle Scholar
  2. 2.
    Anuwong A, Ketwong K, Jitpratoom P, Sasanakietkul T, Duh Q-Y. Safety and outcomes of the transoral endoscopic thyroidectomy vestibular approach. JAMA Surg. 2018;153(1):21–7.CrossRefGoogle Scholar
  3. 3.
    Anuwong A, Sasanakietkul T, Jitpratoom P, Ketwong K, Kim HY, Dionigi G, et al. Transoral endoscopic thyroidectomy vestibular approach (TOETVA): indications, techniques and results. Surg Endosc. 2018;32(1):456–65.CrossRefGoogle Scholar
  4. 4.
    Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LDR, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.CrossRefGoogle Scholar
  5. 5.
    Haugen BR, Sawka AM, Alexander EK, Bible KC, Caturegli P, Doherty GM, et al. American Thyroid Association guidelines on the management of thyroid nodules and differentiated thyroid cancer task force review and recommendation on the proposed renaming of encapsulated follicular variant papillary thyroid carcinoma without invasion to noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Thyroid. 2017;27(4):481–3.CrossRefGoogle Scholar
  6. 6.
    Baloch ZW, LiVolsi VA, Asa SL, Rosai J, Merino MJ, Randolph G, et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn Cytopathol. 2008;36(6):425–37.CrossRefGoogle Scholar
  7. 7.
    Cibas ES, Ali SZ. The 2017 Bethesda system for reporting thyroid cytopathology. Thyroid. 2017;27(11):1341–6.CrossRefGoogle Scholar
  8. 8.
    Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, et al. Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med. 2012;367(8):705–15.CrossRefGoogle Scholar
  9. 9.
    Harrison G, Sosa JA, Jiang X. Evaluation of the Afirma gene expression classifier in repeat indeterminate thyroid nodules. Arch Pathol Lab Med. 2017;141(7):985–9.CrossRefGoogle Scholar
  10. 10.
    Duh Q-Y, Busaidy NL, Rahilly-Tierney C, Gharib H, Randolph G. A systematic review of the methods of diagnostic accuracy studies of the Afirma gene expression classifier. Thyroid. 2017;27(10):1215–22.CrossRefGoogle Scholar
  11. 11.
    Patel KN, Angell TE, Babiarz J, Barth NM, Blevins T, Duh QY, et al. Performance of a genomic sequencing classifier for the preoperative diagnosis of cytologically indeterminate thyroid nodules. JAMA Surg. 2018;153(9):817–24.CrossRefGoogle Scholar
  12. 12.
    Nikiforov YE, Carty SE, Chiosea SI, Coyne C, Duvvuri U, Ferris RL, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627–34.CrossRefGoogle Scholar
  13. 13.
    Valderrabano P, Khazai L, Leon ME, Thompson ZJ, Ma Z, Chung CH, et al. Evaluation of ThyroSeq v2 performance in thyroid nodules with indeterminate cytology. Endocr Relat Cancer. 2017;24(3):127–36; Nikiforova MN, Mercurio S, Wald AI, Barbi de Moura M, Callenberg K, Santana-Santos L, et al. Analytical performance of the ThyroSeq v3 genomic classifier for cancer diagnosis in thyroid nodules. Cancer. 2018;124(8):1682–90.CrossRefGoogle Scholar
  14. 14.
    Steward DL, Carty SE, Sippel RS, Yang SP, Sosa JA, Sipos JA, Figge JJ. Performance of a multigene genomic classifier in thyroid nodules with indeterminate cytology: a prospective blinded multicenter study. JAMA Oncol. 2019;5(2):204–12. [Epub ahead of print]; Labourier E, Shifrin A, Busseniers AE, Lupo MA, Manganelli ML, Andruss B, et al. Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab. 2015;100(7):2743–50.CrossRefGoogle Scholar
  15. 15.
    Lithwick-Yanai G, Dromi N, Shtabsky A, Morgenstern S, Strenov Y, Feinmesser M, et al. Multicentre validation of a microRNA-based assay for diagnosing indeterminate thyroid nodules utilising fine needle aspirate smears. J Clin Pathol. 2017;70(6):500–7.CrossRefGoogle Scholar
  16. 16.
    Lee L, How J, Tabah RJ, Mitmaker EJ. Cost-effectiveness of molecular testing for thyroid nodules with atypia of undetermined significance cytology. J Clin Endocrinol Metabol. 2014;99(8):2674–82.CrossRefGoogle Scholar
  17. 17.
    Kim HK, Kim HY, Chai YJ, Dionigi G, Berber E, Tufano RP. Transoral robotic thyroidectomy: comparison of surgical outcomes between the da Vinci Xi and Si. Surg Laparosc Endosc Percutan Tech. 2018;28(6):404–9.CrossRefGoogle Scholar
  18. 18.
    Wilhelm T, Metzig A. Endoscopic minimally invasive thyroidectomy (eMIT): a prospective proof-of-concept study in humans. World J Surg. 2010;35(3):543–51.CrossRefGoogle Scholar
  19. 19.
    Dionigi G, Bacuzzi A, Lavazza M, Inversini D, Boni L, Rausei S, et al. Transoral endoscopic thyroidectomy: preliminary experience in Italy. Updates Surg. 2017;69(2):225–34.CrossRefGoogle Scholar
  20. 20.
    Russell JO, Clark J, Noureldine SI, Anuwong A, Khadem Al MG, Yub Kim H, et al. Transoral thyroidectomy and parathyroidectomy – a North American series of robotic and endoscopic transoral approaches to the central neck. Oral Oncol. 2017;71:75–80.CrossRefGoogle Scholar
  21. 21.
    Chen Y, Chomsky-Higgins K, Nwaogu I, Seib CD, Gosnell JE, Shen WT, Duh QY, Suh I. Hidden in plain sight: transoral and submental thyroidectomy as a compelling alternative to “scarless” thyroidectomy. J Laparoendosc Adv Surg Tech A. 2018;28(11):1374–7.CrossRefGoogle Scholar
  22. 22.
    Hammad AY, Noureldine SI, Hu T, Ibrahim Y, Masoodi HM, Kandil E. A meta-analysis examining the independent association between thyroid nodule size and malignancy. Gland Surg. 2016;5(3):312–7.CrossRefGoogle Scholar
  23. 23.
    Shin JJ, Caragacianu D, Randolph GW. Impact of thyroid nodule size on prevalence and post-test probability of malignancy: a systematic review. Laryngoscope. 2015;125(1):263–72.CrossRefGoogle Scholar
  24. 24.
    Kluijfhout WP, Pasternak JD, Lim J, Kwon JS, Vriens MR, Clark OH, et al. Frequency of high-risk characteristics requiring total thyroidectomy for 1–4 cm well-differentiated thyroid cancer. Thyroid. 2016;26(6):820–4.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Endocrine Surgery Section, Department of SurgeryUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations