Advertisement

Game Theoretic Approaches to Cyber Security: Challenges, Results, and Open Problems

  • Hamidreza Tavafoghi
  • Yi Ouyang
  • Demosthenis TeneketzisEmail author
  • Michael P. Wellman
Chapter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11830)

Abstract

We formulate cyber security problems with many strategic attackers and defenders as stochastic dynamic games with asymmetric information. We discuss solution approaches to stochastic dynamic games with asymmetric information and identify the difficulties/challenges associated with these approaches. We present a solution methodology for stochastic dynamic games with asymmetric information that resolves some of these difficulties. Our main results are based on certain key assumptions about the game model. Therefore, our methodology can solve only specific classes of cyber security problems. We identify classes of cyber security problems that our methodology cannot solve and connect these problems to open problems in game theory.

Notes

Acknowledgments

This work was supported in part by the NSF grants CNS-1238962, ARO-MURI grant W911NF-13-1-0421, and ARO grant W911NF-17-1-0232.

References

  1. 1.
    Aumann, R.: Agreeing to disagree. Ann. Stat. 4, 1236–1239 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aumann, R., Maschler, M., Stearns, R.: Repeated Games with Incomplete Information. MIT Press, Cambridge (1995)Google Scholar
  3. 3.
    Cardaliaguet, P., Rainer, C., Rosenberg, D., Vieille, N.: Markov games with frequent actions and incomplete information-the limit case. Math. Oper. Res. 41(1), 49–71 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ely, J., Hörner, J., Olszewski, W.: Belief-free equilibria in repeated games. Econometrica 73(2), 377–415 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Escobar, J., Toikka, J.: Efficiency in games with Markovian private information. Econometrica 81(5), 1887–1934 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Etherington, D., Conger, K.: Large DDos attacks cause outages at Twitter, spotify, and other sites. TechCrunch, Np, 21 (2016)Google Scholar
  7. 7.
    Finkle, J., Skariachan, D.: Target cyber breach hits 40 million payment cards at holiday peak. http://www.reuters.com/article/us-target-breach-idUSBRE9BH1GX20131219. Accessed 09 Sept 2016
  8. 8.
    Fudenberg, D., Levine, D., Maskin, E.: The folk theorem with imperfect public information. Econometrica 62(5), 997 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fudenberg, D., Tirole, J.: Game theory. Cambridge, Massachusetts, vol. 393, no. 12, p. 80 (1991)Google Scholar
  10. 10.
    Gensbittel, F., Renault, J.: The value of Markov chain games with incomplete information on both sides. Math. Oper. Res. 40(4), 820–841 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Greenberg, A.: Hackers remotely kill a jeep on the highway? With me in it, Wired. https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway. Accessed 15 Dec 2016
  12. 12.
    Gupta, A., Nayyar, A., Langbort, C., Başar, T.: Common information based Markov perfect equilibria for linear-Gaussian games with asymmetric information. SIAM J. Control Optim. 52(5), 3228–3260 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Hörner, J., Lovo, S.: Belief-free equilibria in games with incomplete information. Econometrica 77(2), 453–487 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hörner, J., Lovo, S., Tomala, T.: Belief-free equilibria in games with incomplete information: characterization and existence. J. Econ. Theory 146(5), 1770–1795 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hörner, J., Sugaya, T., Takahashi, S., Vieille, N.: Recursive methods in discounted stochastic games: an algorithm for \(\delta \rightarrow 1\) and a folk theorem. Econometrica 79(4), 1277–1318 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Li, L., Langbort, C., Shamma, J.: Solving two-player zero-sum repeated Bayesian games. arXiv preprint arXiv:1703.01957 (2017)
  17. 17.
    Li, L., Shamma, J.: LP formulation of asymmetric zero-sum stochastic games. In: 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), pp. 1930–1935. IEEE (2014)Google Scholar
  18. 18.
    Mahajan, A., Mannan, M.: Decentralized stochastic control. Ann. Oper. Res. 241(1–2), 109–126 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Mailath, G., Samuelson, L.: Repeated Games and Reputations. Oxford University Press, Oxford (2006)CrossRefGoogle Scholar
  20. 20.
    Maskin, E., Fudenberg, D.: The folk theorem in repeated games with discounting or with incomplete information. Econometrica 53(3), 533–554 (1986)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Maskin, E., Tirole, J.: Markov perfect equilibrium: I. Observable actions. J. Econ. Theory 100(2), 191–219 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Matsushima, H.: Repeated games with private monitoring: two players. Econometrica 72(3), 823–852 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Miehling, E., Rasouli, M., Teneketzis, D.: A POMDP approach to the dynamic defense of large-scale cyber networks. IEEE Trans. Inf. Forensics Secur. 13(10), 2490–2505 (2018)CrossRefGoogle Scholar
  24. 24.
    Miller, D.: Robust collusion with private information. Rev. Econ. Stud. 79(2), 778–811 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Myerson, R.: Game Theory. Harvard University Press, Cambridge (2013)Google Scholar
  26. 26.
    Nayyar, A., Gupta, A.: Information structures and values in zero-sum stochastic games. In: 2017 American Control Conference (ACC), pp. 3658–3663. IEEE (2017)Google Scholar
  27. 27.
    Nayyar, A., Gupta, A., Langbort, C., Başar, T.: Common information based Markov perfect equilibria for stochastic games with asymmetric information: finite games. IEEE Trans. Autom. Control 59(3), 555–570 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Department of Homeland Security. Industrial control systems cyber emergency response team (ICS-CERT). https://ics-cert.us-cert.gov
  29. 29.
    Osborne, M., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)Google Scholar
  30. 30.
    Ouyang, Y., Tavafoghi, H., Teneketzis, D.: Dynamic oligopoly games with private Markovian dynamics. In: 54th IEEE Conference on Decision and Control (CDC) (2015)Google Scholar
  31. 31.
    Ouyang, Y., Tavafoghi, H., Teneketzis, D.: Dynamic games with asymmetric information: common information based perfect Bayesian equilibria and sequential decomposition. IEEE Trans. Autom. Control 62(1), 222–237 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Renault, J.: The value of Markov chain games with lack of information on one side. Math. Oper. Res. 31(3), 490–512 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Sinha, A., Anastasopoulos, A.: Structured perfect Bayesian equilibrium in infinite horizon dynamic games with asymmetric information. In: American Control Conference (2016)Google Scholar
  34. 34.
    Sugaya, T.: Folk theorem in repeated games with private monitoring. Working Paper (2019)Google Scholar
  35. 35.
    Sugaya, T.: Folk theorem in stochastic games with private state and private monitoring. Working Paper (2012)Google Scholar
  36. 36.
    Tavafoghi, H.: On design and analysis of cyber-physical systems with strategic agents. Ph.D. thesis, University of Michigan (2017)Google Scholar
  37. 37.
    Tavafoghi, H., Ouyang, Y., Teneketzis, D.: On stochastic dynamic games with delayed sharing information structure. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 7002–7009. IEEE (2016)Google Scholar
  38. 38.
    Tavafoghi, H., Ouyang, Y., Teneketzis, D.: A unified approach to dynamic decision problems with asymmetric information-part i: non-strategic agents. Submitted to IEEE Transactions on Automatic Control (2018). arXiv:1812.01130
  39. 39.
    Tavafoghi, H., Ouyang, Y., Teneketzis, D.: A unified approach to dynamic decision problems with asymmetric information-part ii: strategic agents. Submitted to IEEE Transactions on Automatic Control (2018). arXiv:1812.01132
  40. 40.
    Vasal, D., Anastasopoulos, A.: Signaling equilibria for dynamic LQG games with asymmetric information. In: 55th IEEE Conference on Decision and Control (CDC), pp. 6901–6908. IEEE (2016)Google Scholar
  41. 41.
    Washburn, R.B., Teneketzis, D.: Asymptotic agreement among communicating decisionmakers. Stoch.: Int. J. Prob. Stoch. Processes 13(1–2), 103–129 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Watson, J.: Perfect Bayesian equilibrium: general definitions and illustrations. Working Paper (2016)Google Scholar
  43. 43.
    Yamamoto, Y.: A limit characterization of belief-free equilibrium payoffs in repeated games. J. Econ. Theory 144(2), 802–824 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Zamir, S.: Repeated games of incomplete information: zero-sum. Handb. Game Theory 1, 109–154 (1992)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hamidreza Tavafoghi
    • 1
  • Yi Ouyang
    • 2
  • Demosthenis Teneketzis
    • 3
    Email author
  • Michael P. Wellman
    • 4
  1. 1.Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Industrial Engineering and Operations ResearchUniversity of CaliforniaBerkeleyUSA
  3. 3.Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborUSA
  4. 4.Computer Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations