Skip to main content

Optimization Based Particle-Mesh Algorithm for High-Order and Conservative Scalar Transport

  • Chapter
  • First Online:
Numerical Methods for Flows

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 132))

Abstract

A particle-mesh strategy is presented for scalar transport problems which provides diffusion-free advection, conserves mass locally (i.e. cellwise) and exhibits optimal convergence on arbitrary polyhedral meshes. This is achieved by expressing the convective field naturally located on the Lagrangian particles as a mesh quantity by formulating a dedicated particle-mesh projection based via a PDE-constrained optimization problem. Optimal convergence and local conservation are demonstrated for a benchmark test, and the application of the scheme to mass conservative density tracking is illustrated for the Rayleigh–Taylor instability.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans, M., Harlow, F., Bromberg, E.: The Particle-in-Cell Method for Hydrodynamic Calculations. Technical Report. Los Alamos Scientific Laboratory, Mexico (1957)

    Google Scholar 

  2. Snider, D.: An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows. J. Comput. Phys. 170(2), 523–549 (2001). https://doi.org/10.1006/jcph.2001.6747

    Article  Google Scholar 

  3. Sulsky, D., Chen, Z., Schreyer, H.: A particle method for history-dependent materials. Comput. Meth. Appl. Mech. Eng. 118(1–2), 179–196 (1994). https://doi.org/10.1016/0045-7825(94)90112-0

    Article  MathSciNet  Google Scholar 

  4. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. 24(3), 965 (2005). https://doi.org/10.1145/1073204.1073298

    Article  Google Scholar 

  5. Kelly, D.M., Chen, Q., Zang, J.: PICIN: a particle-in-cell solver for incompressible free surface flows with two-way fluid-solid coupling. SIAM J. Sci. Comput. 37(3), 403–424 (2015). https://doi.org/10.1137/140976911

    Article  MathSciNet  Google Scholar 

  6. Maljaars, J., Labeur, R.J., Möller, M., Uijttewaal, W.: A numerical wave tank using a hybrid particle-mesh approach. Proc. Eng. 175, 21–28 (2017). https://doi.org/10.1016/j.proeng.2017.01.007

    Article  Google Scholar 

  7. Edwards, E., Bridson, R.: A high-order accurate particle-in-cell method. Int. J. Numer. Methods Eng. 90(9), 1073–1088 (2012). https://doi.org/10.1002/nme.3356

    Article  MathSciNet  Google Scholar 

  8. Sulsky, D., Gong, M.: Improving the material-point method. In: Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems, pp. 217–240. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-39022-2_10

    Chapter  Google Scholar 

  9. Maljaars, J.M., Labeur, R.J., Möller, M.: A hybridized discontinuous Galerkin framework for high–order particle–mesh operator splitting of the incompressible Navier–Stokes equations. J. Comput. Phys. 358, 150–172 (2018). https://doi.org/10.1016/j.jcp.2017.12.036

    Article  MathSciNet  Google Scholar 

  10. Maljaars, J.M., Labeur, R.J., Trask, N., Sulsky, D.: Conservative, high-order particle-mesh scheme with applications to advection-dominated flows. Comput. Methods Appl. Mech. Eng. 348, 443–465 (2019). ISSN 0045-7825. https://doi.org/10.1016/J.CMA.2019.01.028

    Article  MathSciNet  Google Scholar 

  11. Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  12. Rhebergen, S., Wells, G.N.: Analysis of a hybridized/interface stabilized finite element method for the stokes equations. SIAM J. Numer. Anal. 55(4), 1982–2003 (2017). https://doi.org/10.1137/16M1083839

    Article  MathSciNet  Google Scholar 

  13. Wells, G.N.: Analysis of an interface stabilized finite element method: the advection-diffusion-reaction equation. SIAM J. Numer. Anal. 49(1), 87–109 (2011). https://doi.org/10.1137/090775464

    Article  MathSciNet  Google Scholar 

  14. Labeur, R.J., Wells, G.N.: Energy stable and momentum conserving hybrid finite element method for the incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 34(2), 889–913 (2012). https://doi.org/10.1137/100818583

    Article  MathSciNet  Google Scholar 

  15. LeVeque, R.J.: High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal. 33(2), 627–665 (1996). https://doi.org/10.1137/0733033

    Article  MathSciNet  Google Scholar 

  16. He, X., Chen, S., Zhang, R.: A lattice boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 152(2), 642–663 (1999). https://doi.org/10.1006/jcph.1999.6257

    Article  MathSciNet  Google Scholar 

  17. Ralston, A.: Runge–Kutta methods with minimum error bounds. Math. Comput. 16(80), 431–437 (1962). https://doi.org/10.2307/2003133

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob M. Maljaars .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maljaars, J.M., Labeur, R.J., Trask, N.A., Sulsky, D.L. (2020). Optimization Based Particle-Mesh Algorithm for High-Order and Conservative Scalar Transport. In: van Brummelen, H., Corsini, A., Perotto, S., Rozza, G. (eds) Numerical Methods for Flows. Lecture Notes in Computational Science and Engineering, vol 132. Springer, Cham. https://doi.org/10.1007/978-3-030-30705-9_23

Download citation

Publish with us

Policies and ethics