Skip to main content

Neurocircuitry of Anxiety Disorders

  • Chapter
  • First Online:
Clinical Handbook of Anxiety Disorders

Part of the book series: Current Clinical Psychiatry ((CCPSY))

Abstract

Anxiety disorders have the highest lifetime prevalence rates (33.7%) and the youngest age of onset (median age, 11 years old) than any other mental illness in the United States. Further epidemiological research suggests that anxiety disorders often precede onset of other psychiatric conditions and worsen prognosis compared to individuals without anxiety. Current neuropsychiatric research exploring the biological underpinnings of anxiety and stress disorders such as generalized anxiety disorders (GAD), social anxiety disorder (SAD), specific phobia, panic disorder (PD), and posttraumatic stress disorder (PTSD) may be able to identify which structures can be targeted in treatment and interventions for said disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Etkin A, Wager TD. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry. 2007;164(10):1476–88.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Duval ER, Javanbakht A, Liberzon I. Neural circuits in anxiety and stress disorders: a focused review. Ther Clin Risk Manag. 2015;11:115–26. https://doi.org/10.2147/TCRM.S48528.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology. 2010;35(1):169–91. https://doi.org/10.1038/npp.2009.83.

    Article  PubMed  Google Scholar 

  4. Rauch SL, Shin LM, Wright CI. Neuroimaging studies of amygdala function in anxiety disorders. Ann N Y Acad Sci. 2003;985(1):389–410.

    Article  PubMed  Google Scholar 

  5. Raichle ME. The restless brain. Brain Connect. 2011;1(1):3–12. https://doi.org/10.1089/brain.2011.0019.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex. 2009;19(1):72–8. https://doi.org/10.1093/cercor/bhn059.

    Article  PubMed  Google Scholar 

  7. Fox MD, Greicius M. Clinical applications of resting state functional connectivity. Front Syst Neurosci. 2010;4:19.

    PubMed  PubMed Central  Google Scholar 

  8. Milad MR, Quirk GJ. Fear extinction as a model for translational neuroscience: ten years of progress. Annu Rev Psychol. 2012;63:129–51. https://doi.org/10.1146/annurev.psych.121208.131631.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lonsdorf TB, Menz MM, Andreatta M, Fullana MA, Golkar A, Haaker J, et al. Don’t fear ‘fear conditioning’: Methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci Biobehav Rev. 2017;77:247–85. https://doi.org/10.1016/j.neubiorev.2017.02.026.

    Article  PubMed  Google Scholar 

  10. Lonsdorf TB, Merz CJ. More than just noise: Inter-individual differences in fear acquisition, extinction and return of fear in humans – Biological, experiential, temperamental factors, and methodological pitfalls. Neurosci Biobehav Rev. 2017;80:703–28. https://doi.org/10.1016/j.neubiorev.2017.07.007.

    Article  PubMed  Google Scholar 

  11. Quirk GJ, Mueller D. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology. 2008;33(1):56–72.

    Article  PubMed  Google Scholar 

  12. Hermans D, Craske MG, Mineka S, Lovibond PF. Extinction in human fear conditioning. Biol Psychiatry. 2006;60(4):361–8.

    Article  PubMed  Google Scholar 

  13. Craske MG, Kircanski K, Zelikowsky M, Mystkowski J, Chowdhury N, Baker A. Optimizing inhibitory learning during exposure therapy. Behav Res Ther. 2008;46(1):5–27.

    Article  PubMed  Google Scholar 

  14. McNally RJ. Mechanisms of exposure therapy: how neuroscience can improve psychological treatments for anxiety disorders. Clin Psychol Rev. 2007;27(6):750–9.

    Article  PubMed  Google Scholar 

  15. Beckers T, Krypotos A-M, Boddez Y, Effting M, Kindt M. What’s wrong with fear conditioning? Biol Psychol. 2013;92(1):90–6.

    Article  PubMed  Google Scholar 

  16. Milad MR, Wright CI, Orr SP, Pitman RK, Quirk GJ, Rauch SL. Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry. 2007;62(5):446–54.

    Article  PubMed  Google Scholar 

  17. Quirk GJ, Garcia R, Gonzalez-Lima F. Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry. 2006;60(4):337–43.

    Article  PubMed  Google Scholar 

  18. Marin JM, Agusti A, Villar I, Forner M, Nieto D, Carrizo SJ, et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA. 2012;307(20):2169–76. https://doi.org/10.1001/jama.2012.3418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Duits P, Cath DC, Lissek S, Hox JJ, Hamm AO, Engelhard IM, et al. Updated meta-analysis of classical fear conditioning in the anxiety disorders. Depress Anxiety. 2015;32(4):239–53. https://doi.org/10.1002/da.22353.

    Article  PubMed  Google Scholar 

  20. Milad MR, Rauch SL. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci. 2012;16(1):43–51. https://doi.org/10.1016/j.tics.2011.11.003.

    Article  PubMed  Google Scholar 

  21. Liberzon I, Martis B. Neuroimaging studies of emotional responses in PTSD. Ann N Y Acad Sci. 2006;1071:87–109. https://doi.org/10.1196/annals.1364.009.

    Article  PubMed  Google Scholar 

  22. Taylor JM, Whalen PJ. Neuroimaging and anxiety: The neural substrates of pathological and non-pathological anxiety. Curr Psychiatry Rep. 2015;17(6):49.

    Article  PubMed  Google Scholar 

  23. Abelson JL, Khan S, Liberzon I, Young EA. HPA axis activity in patients with panic disorder: review and synthesis of four studies. Depress Anxiety. 2007;24(1):66–76.

    Article  PubMed  Google Scholar 

  24. Knight DC, Nguyen HT, Bandettini PA. The role of the human amygdala in the production of conditioned fear responses. NeuroImage. 2005;26(4):1193–200.

    Article  PubMed  Google Scholar 

  25. Hariri AR, Holmes A. Genetics of emotional regulation: the role of the serotonin transporter in neural function. Trends Cogn Sci. 2006;10(4):182–91. https://doi.org/10.1016/j.tics.2006.02.011.

    Article  PubMed  Google Scholar 

  26. Hariri AR, Drabant EM, Munoz KE, Kolachana BS, Mattay VS, Egan MF, et al. A susceptibility gene for affective disorders and the response of the human amygdala. Arch Gen Psychiatry. 2005;62(2):146–52. https://doi.org/10.1001/archpsyc.62.2.146.

    Article  CAS  PubMed  Google Scholar 

  27. Furmark T, Tillfors M, Garpenstrand H, Marteinsdottir I, Langstrom B, Oreland L, et al. Serotonin transporter polymorphism related to amygdala excitability and symptom severity in patients with social phobia. Neurosci Lett. 2004;362(3):189–92.

    Article  CAS  PubMed  Google Scholar 

  28. Drabant EM, Ramel W, Edge MD, Hyde LW, Kuo JR, Goldin PR, et al. Neural mechanisms underlying 5-HTTLPR-related sensitivity to acute stress. Am J Psychiatry. 2012;169(4):397–405.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24(4):417–63.

    Article  CAS  PubMed  Google Scholar 

  30. Casey B, Jones RM, Somerville LH. Braking and Accelerating of the Adolescent Brain. J Res Adolesc. 2011;21(1):21–33. https://doi.org/10.1111/j.1532-7795.2010.00712.x.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Casey B, Ruberry EJ, Libby V, Glatt CE, Hare T, Soliman F, et al. Transitional and translational studies of risk for anxiety. Depress Anxiety. 2011;28(1):18–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bishop SJ, Duncan J, Lawrence AD. State anxiety modulation of the amygdala response to unattended threat-related stimuli. J Neurosci. 2004;24(46):10364–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Davis M, Walker DL, Miles L, Grillon C. Phasic vs sustained fear in rats and humans: role of the extended amygdala in fear vs anxiety. Neuropsychopharmacology. 2010;35(1):105–35. https://doi.org/10.1038/npp.2009.109.

    Article  PubMed  Google Scholar 

  34. Walker DL, Ressler KJ, Lu KT, Davis M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci. 2002;22(6):2343–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lebow MA, Chen A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry. 2016;21(4):450–63. https://doi.org/10.1038/mp.2016.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walker DL, Toufexis DJ, Davis M. Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur J Pharmacol. 2003;463(1-3):199–216.

    Article  CAS  PubMed  Google Scholar 

  37. Kazama AM, Heuer E, Davis M, Bachevalier J. Effects of neonatal amygdala lesions on fear learning, conditioned inhibition, and extinction in adult macaques. Behav Neurosci. 2012;126(3):392–403. https://doi.org/10.1037/a0028241.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Poulos AM, Ponnusamy R, Dong HW, Fanselow MS. Compensation in the neural circuitry of fear conditioning awakens learning circuits in the bed nuclei of the stria terminalis. Proc Natl Acad Sci U S A. 2010;107(33):14881–6. https://doi.org/10.1073/pnas.1005754107.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lockwood PL, Wittmann MK. Ventral anterior cingulate cortex and social decision-making. Neurosci Biobehav Rev. 2018;92:187–91. https://doi.org/10.1016/j.neubiorev.2018.05.030.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain. 1995;118(Pt 1):279–306.

    Article  PubMed  Google Scholar 

  41. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4(6):215–22.

    Article  CAS  PubMed  Google Scholar 

  42. Marusak H, Thomason M, Peters C, Zundel C, Elrahal F, Rabinak C. You say ‘prefrontal cortex’ and I say ‘anterior cingulate’: meta-analysis of spatial overlap in amygdala-to-prefrontal connectivity and internalizing symptomology. Transl Psychiatry. 2016;6(11):e944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lieberman MD, Eisenberger NI. The dorsal anterior cingulate cortex is selective for pain: Results from large-scale reverse inference. Proc Natl Acad Sci U S A. 2015;112(49):15250–5. https://doi.org/10.1073/pnas.1515083112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng DT, Knight DC, Smith CN, Helmstetter FJ. Human amygdala activity during the expression of fear responses. Behav Neurosci. 2006;120(6):1187.

    Article  PubMed  Google Scholar 

  45. Cheng DT, Knight DC, Smith CN, Stein EA, Helmstetter FJ. Functional MRI of human amygdala activity during Pavlovian fear conditioning: stimulus processing versus response expression. Behav Neurosci. 2003;117(1):3.

    Article  PubMed  Google Scholar 

  46. Milad MR, Quirk GJ, Pitman RK, Orr SP, Fischl B, Rauch SL. A role for the human dorsal anterior cingulate cortex in fear expression. Biol Psychiatry. 2007;62(10):1191–4.

    Article  PubMed  Google Scholar 

  47. Chen T, Cai W, Ryali S, Supekar K, Menon V. Distinct global brain dynamics and spatiotemporal organization of the salience network. PLoS Biol. 2016;14(6):e1002469. https://doi.org/10.1371/journal.pbio.1002469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Critchley HD. Electrodermal responses: what happens in the brain. Neuroscientist. 2002;8(2):132–42.

    Article  PubMed  Google Scholar 

  49. Whalen PJ, Bush G, McNally RJ, Wilhelm S, McInerney SC, Jenike MA, et al. The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biol Psychiatry. 1998;44(12):1219–28.

    Article  CAS  PubMed  Google Scholar 

  50. Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008;13:833–57.

    Article  Google Scholar 

  51. Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J. Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron. 2006;51(6):871–82. https://doi.org/10.1016/j.neuron.2006.07.029.

    Article  CAS  PubMed  Google Scholar 

  52. Dodhia S, Hosanagar A, Fitzgerald DA, Labuschagne I, Wood AG, Nathan PJ, et al. Modulation of resting-state amygdala-frontal functional connectivity by oxytocin in generalized social anxiety disorder. Neuropsychopharmacology. 2014;39(9):2061–9. https://doi.org/10.1038/npp.2014.53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pizzagalli DA. Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology. 2011;36(1):183–206. https://doi.org/10.1038/npp.2010.166.

    Article  PubMed  Google Scholar 

  54. Ongur D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10(3):206–19.

    Article  CAS  PubMed  Google Scholar 

  55. Drevets WC, Savitz J, Trimble M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr. 2008;13(8):663–81.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Johansen-Berg H, Gutman DA, Behrens TE, Matthews PM, Rushworth MF, Katz E, et al. Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex. 2008;18(6):1374–83.

    Article  CAS  PubMed  Google Scholar 

  57. Tuescher O, Protopopescu X, Pan H, Cloitre M, Butler T, Goldstein M, et al. Differential activity of subgenual cingulate and brainstem in panic disorder and PTSD. J Anxiety Disord. 2011;25(2):251–7. https://doi.org/10.1016/j.janxdis.2010.09.010.

    Article  PubMed  Google Scholar 

  58. Haas BW, Omura K, Constable RT, Canli T. Emotional conflict and neuroticism: personality-dependent activation in the amygdala and subgenual anterior cingulate. Behav Neurosci. 2007;121(2):249–56. https://doi.org/10.1037/0735-7044.121.2.249.

    Article  PubMed  Google Scholar 

  59. Phelps EA, Delgado MR, Nearing KI, LeDoux JE. Extinction learning in humans: role of the amygdala and vmPFC. Neuron. 2004;43(6):897–905.

    Article  CAS  PubMed  Google Scholar 

  60. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45(5):651–60.

    Article  CAS  PubMed  Google Scholar 

  61. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, et al. Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry. 2000;48(8):830–43.

    Article  CAS  PubMed  Google Scholar 

  62. Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12(6):527–44.

    Article  CAS  PubMed  Google Scholar 

  63. Myers-Schulz B, Koenigs M. Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders. Mol Psychiatry. 2012;17(2):132–41. https://doi.org/10.1038/mp.2011.88.

    Article  CAS  PubMed  Google Scholar 

  64. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15(2):85–93. https://doi.org/10.1016/j.tics.2010.11.004.

    Article  PubMed  Google Scholar 

  65. Craig AD. How do you feel? interoception: the sense of the physiological condition of the body. Nat Rev. 2002;3(8):655–66.

    Article  CAS  Google Scholar 

  66. Craig AD. How do you feel – now? The anterior insula and human awareness. Nature reviews. 2009;10(1):59–70.

    Article  CAS  PubMed  Google Scholar 

  67. Craig AD. Significance of the insula for the evolution of human awareness of feelings from the body. Ann N Y Acad Sci. 2011;1225:72–82. https://doi.org/10.1111/j.1749-6632.2011.05990.x.

    Article  PubMed  Google Scholar 

  68. Namkung H, Kim SH, Sawa A. The insula: an underestimated brain area in clinical neuroscience, psychiatry, and neurology. Trends Neurosci. 2017;40(4):200–7. https://doi.org/10.1016/j.tins.2017.02.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khalsa SS, Adolphs R, Cameron OG, Critchley HD, Davenport PW, Feinstein JS, et al. Interoception and mental health: a roadmap. Biol Psychiatry. 2018; https://doi.org/10.1016/j.bpsc.2017.12.004.

    Google Scholar 

  70. Murphy J, Brewer R, Catmur C, Bird G. Interoception and psychopathology: a developmental neuroscience perspective. Dev Cogn Neurosci. 2017;23:45–56. https://doi.org/10.1016/j.dcn.2016.12.006.

    Article  PubMed  Google Scholar 

  71. Seth AK, Friston KJ. Active interoceptive inference and the emotional brain. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371(1708) https://doi.org/10.1098/rstb.2016.0007.

    Article  Google Scholar 

  72. Bernhardt BC, Singer T. The neural basis of empathy. Annu Rev Neurosci. 2012;35:1–23. https://doi.org/10.1146/annurev-neuro-062111-150536.

    Article  CAS  PubMed  Google Scholar 

  73. Zaki J, Wager TD, Singer T, Keysers C, Gazzola V. The anatomy of suffering: understanding the relationship between nociceptive and empathic pain. Trends Cogn Sci. 2016;20(4):249–59. https://doi.org/10.1016/j.tics.2016.02.003.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Craig AD. How do you feel? an interoceptive moment with your neurobiological self. Princeton: Princeton University Press; 2016.

    Google Scholar 

  75. Sarinopoulos I, Grupe D, Mackiewicz K, Herrington J, Lor M, Steege E, et al. Uncertainty during anticipation modulates neural responses to aversion in human insula and amygdala. Cereb Cortex. 2009;20(4):929–40.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chua P, Krams M, Toni I, Passingham R, Dolan R. A functional anatomy of anticipatory anxiety. NeuroImage. 1999;9(6 Pt 1):563–71. https://doi.org/10.1006/nimg.1999.0407.

    Article  CAS  PubMed  Google Scholar 

  77. Ploghaus A, Tracey I, Gati JS, Clare S, Menon RS, Matthews PM, et al. Dissociating pain from its anticipation in the human brain. Science. 1999;284(5422):1979–81.

    Article  CAS  PubMed  Google Scholar 

  78. Simmons A, Matthews SC, Stein MB, Paulus MP. Anticipation of emotionally aversive visual stimuli activates right insula. Neuroreport. 2004;15(14):2261–5.

    Article  PubMed  Google Scholar 

  79. Simmons A, Strigo I, Matthews SC, Paulus MP, Stein MB. Anticipation of aversive visual stimuli is associated with increased insula activation in anxiety-prone subjects. Biol Psychiatry. 2006;60(4):402–9. https://doi.org/10.1016/j.biopsych.2006.04.038.

    Article  PubMed  Google Scholar 

  80. Paulus MP. The role of neuroimaging for the diagnosis and treatment of anxiety disorders. Depress Anxiety. 2008;25(4):348–56.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Klumpp H, Angstadt M, Phan KL. Insula reactivity and connectivity to anterior cingulate cortex when processing threat in generalized social anxiety disorder. Biol Psychol. 2012;89(1):273–6. https://doi.org/10.1016/j.biopsycho.2011.10.010.

    Article  PubMed  Google Scholar 

  82. Ji J, Maren S. Hippocampal involvement in contextual modulation of fear extinction. Hippocampus. 2007;17(9):749–58.

    Article  PubMed  Google Scholar 

  83. Martin EI, Ressler KJ, Binder E, Nemeroff CBJPC. The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Psychiatr Clin. 2009;32(3):549–75.

    Google Scholar 

  84. Bannerman D, Rawlins J, McHugh S, Deacon R, Yee B, Bast T, et al. Regional dissociations within the hippocampus – memory and anxiety. Neurosci Biobehav Rev. 2004;28(3):273–83.

    Article  CAS  PubMed  Google Scholar 

  85. Richmond M, Yee B, Pouzet B, Veenman L, Rawlins J, Feldon J, et al. Dissociating context and space within the hippocampus: effects of complete, dorsal, and ventral excitotoxic hippocampal lesions on conditioned freezing and spatial learning. Behav Neurosci. 1999;113(6):1189.

    Article  CAS  PubMed  Google Scholar 

  86. Kjelstrup KG, Tuvnes FA, Steffenach H-A, Murison R, Moser EI, Moser M-B. Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci. 2002;99(16):10825–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends Cogn Sci. 2004;8(4):170–7.

    Article  PubMed  Google Scholar 

  88. Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci. 2014;18(4):177–85. https://doi.org/10.1016/j.tics.2013.12.003.

    Article  PubMed  Google Scholar 

  89. Iversen SD, Mishkin M. Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp Brain Res. 1970;11(4):376–86.

    Article  CAS  PubMed  Google Scholar 

  90. Aron AR, Robbins TW, Poldrack RA. Right inferior frontal cortex: addressing the rebuttals. Front Hum Neurosci. 2014;8:905. https://doi.org/10.3389/fnhum.2014.00905.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dillon DG, Pizzagalli DA. Inhibition of Action, Thought, and Emotion: A Selective Neurobiological Review. Appl Prev Psychol. 2007;12(3):99–114.

    Article  PubMed  PubMed Central  Google Scholar 

  92. van Rooij SJ, Rademaker AR, Kennis M, Vink M, Kahn RS, Geuze E. Impaired right inferior frontal gyrus response to contextual cues in male veterans with PTSD during response inhibition. J Psychiatry Neurosci. 2014;39(5):330–8.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Falconer E, Bryant R, Felmingham KL, Kemp AH, Gordon E, Peduto A, et al. The neural networks of inhibitory control in posttraumatic stress disorder. J Psychiatry Neurosci. 2008;33(5):413–22.

    PubMed  PubMed Central  Google Scholar 

  94. Delgado MR, Nearing KI, Ledoux JE, Phelps EA. Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron. 2008;59(5):829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Milad MR, Rauch SL. The role of the orbitofrontal cortex in anxiety disorders. Ann N Y Acad Sci. 2007;1121(1):546–61.

    Article  PubMed  Google Scholar 

  96. Milad MR, Rauch SL, Pitman RK, Quirk GJ. Fear extinction in rats: implications for human brain imaging and anxiety disorders. Biol Psychol. 2006;73(1):61–71.

    Article  PubMed  Google Scholar 

  97. Jovanovic T, Ressler KJ. How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry. 2010;167(6):648–62. https://doi.org/10.1176/appi.ajp.2009.09071074.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rauch SL, Shin LM, Phelps EA. Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research – past, present, and future. Biol Psychiatry. 2006;60(4):376–82.

    Article  PubMed  Google Scholar 

  99. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry. 2009;66(12):1075–82. https://doi.org/10.1016/j.biopsych.2009.06.026.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nature reviews. 2012;13(11):769–87. https://doi.org/10.1038/nrn3339.

    Article  CAS  PubMed  Google Scholar 

  101. Koenigs M, Huey ED, Calamia M, Raymont V, Tranel D, Grafman J. Distinct regions of prefrontal cortex mediate resistance and vulnerability to depression. J Neurosci. 2008;28(47):12341–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Calhoon GG, Tye KM. Resolving the neural circuits of anxiety. Nat Neurosci. 2015;18(10):1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. McDonald AJ. Cortical pathways to the mammalian amygdala. Prog Neurobiol. 1998;55(3):257–332.

    Article  CAS  PubMed  Google Scholar 

  104. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000;23:155–84. https://doi.org/10.1146/annurev.neuro.23.1.155.

    Article  CAS  PubMed  Google Scholar 

  105. Lipka J, Miltner WH, Straube T. Vigilance for threat interacts with amygdala responses to subliminal threat cues in specific phobia. Biol Psychiatry. 2011;70(5):472–8. https://doi.org/10.1016/j.biopsych.2011.04.005.

    Article  PubMed  Google Scholar 

  106. Killgore WD, Britton JC, Schwab ZJ, Price LM, Weiner MR, Gold AL, et al. Cortico-limbic responses to masked affective faces across PTSD, panic disorder, and specific phobia. Depress Anxiety. 2014;31(2):150–9.

    Article  PubMed  Google Scholar 

  107. Hilbert K, Pine DS, Muehlhan M, Lueken U, Steudte-Schmiedgen S, Beesdo-Baum K. Gray and white matter volume abnormalities in generalized anxiety disorder by categorical and dimensional characterization. Psychiatry Res. 2015;234(3):314–20. https://doi.org/10.1016/j.pscychresns.2015.10.009.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Seligman MEP. Phobias and preparedness. Behav Ther. 1971;2:307–20.

    Article  Google Scholar 

  109. Ohman A, Mineka S. Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol Rev. 2001;108(3):483–522.

    Article  CAS  PubMed  Google Scholar 

  110. APA. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Publishing; 2013.

    Google Scholar 

  111. Hattingh CJ, Ipser J, Tromp S, Syal S, Lochner C, SJB B, et al. Functional magnetic resonance imaging during emotion recognition in social anxiety disorder: an activation likelihood meta-analysis. Front Hum Neurosci. 2013;6:347.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Frick A, Howner K, Fischer H, Kristiansson M, Furmark T. Altered fusiform connectivity during processing of fearful faces in social anxiety disorder. Transl Psychiatry. 2013;3:e312. https://doi.org/10.1038/tp.2013.85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci. 1997;17(11):4302–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tillfors M, Furmark T, Marteinsdottir I, Fischer H, Pissiota A, Langstrom B, et al. Cerebral blood flow in subjects with social phobia during stressful speaking tasks: a PET study. Am J Psychiatry. 2001;158(8):1220–6.

    Article  CAS  PubMed  Google Scholar 

  115. Lorberbaum JP, Kose S, Johnson MR, Arana GW, Sullivan LK, Hamner MB, et al. Neural correlates of speech anticipatory anxiety in generalized social phobia. Neuroreport. 2004;15(18):2701–5.

    PubMed  Google Scholar 

  116. Danti S, Ricciardi E, Gentili C, Gobbini MI, Pietrini P, Guazzelli M. Is social phobia a “mis-communication” disorder? brain functional connectivity during face perception differs between patients with social phobia and healthy control subjects. Front Syst Neurosci. 2010;4:152. https://doi.org/10.3389/fnsys.2010.00152.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Klumpp H, Fitzgerald JM. Neuroimaging predictors and mechanisms of treatment response in social anxiety disorder: an overview of the Amygdala. Curr Psychiatry Rep. 2018;20(10):89. https://doi.org/10.1007/s11920-018-0948-1.

    Article  PubMed  Google Scholar 

  118. Young KS, Burklund LJ, Torre JB, Saxbe D, Lieberman MD, Craske MG. Treatment for social anxiety disorder alters functional connectivity in emotion regulation neural circuitry. Psychiatry Res Neuroimaging. 2017;261:44–51. https://doi.org/10.1016/j.pscychresns.2017.01.005.

    Article  PubMed  Google Scholar 

  119. Bandelow B, Michaelis S. Epidemiology of anxiety disorders in the 21st century. Dialogues Clin Neurosci. 2015;17(3):327–35.

    PubMed  PubMed Central  Google Scholar 

  120. Ruscio AM, Brown TA, Chiu WT, Sareen J, Stein MB, Kessler RC. Social fears and social phobia in the USA: results from the National Comorbidity Survey Replication. Psychol Med. 2008;38(1):15–28. https://doi.org/10.1017/S0033291707001699.

    Article  CAS  PubMed  Google Scholar 

  121. Mochcovitch MD, da Rocha Freire RC, Garcia RF, Nardi AE. A systematic review of fMRI studies in generalized anxiety disorder: evaluating its neural and cognitive basis. J Affect Disord. 2014;167:336–42. https://doi.org/10.1016/j.jad.2014.06.041.

    Article  PubMed  Google Scholar 

  122. Liu WJ, Yin DZ, Cheng WH, Fan MX, You MN, Men WW, et al. Abnormal functional connectivity of the amygdala-based network in resting-state FMRI in adolescents with generalized anxiety disorder. Med Sci Monit. 2015;21:459–67. https://doi.org/10.12659/MSM.893373.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Lissek S. Toward an account of clinical anxiety predicated on basic, neurally mapped mechanisms of Pavlovian fear-learning: the case for conditioned overgeneralization. Depress Anxiety. 2012;29(4):257–63. https://doi.org/10.1002/da.21922.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Greenberg T, Carlson JM, Cha J, Hajcak G, Mujica-Parodi LR. Neural reactivity tracks fear generalization gradients. Biol Psychol. 2013;92(1):2–8. https://doi.org/10.1016/j.biopsycho.2011.12.007.

    Article  PubMed  Google Scholar 

  125. Yassa MA, Hazlett RL, Stark CE, Hoehn-Saric R. Functional MRI of the amygdala and bed nucleus of the stria terminalis during conditions of uncertainty in generalized anxiety disorder. J Psychiatr Res. 2012;46(8):1045–52. https://doi.org/10.1016/j.jpsychires.2012.04.013.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Roy AK, Fudge JL, Kelly C, Perry JS, Daniele T, Carlisi C, et al. Intrinsic functional connectivity of amygdala-based networks in adolescent generalized anxiety disorder. J Am Acad Child Adolesc Psychiatry. 2013;52(3):290–9. e2. https://doi.org/10.1016/j.jaac.2012.12.010.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Etkin A, Prater KE, Schatzberg AF, Menon V, Greicius MD. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder. Arch Gen Psychiatry. 2009;66(12):1361–72. https://doi.org/10.1001/archgenpsychiatry.2009.104.

    Article  PubMed  Google Scholar 

  128. Brooks SJ, Stein DJ. A systematic review of the neural bases of psychotherapy for anxiety and related disorders. Dialogues Clin Neurosci. 2015;17(3):261–79.

    PubMed  PubMed Central  Google Scholar 

  129. Gorman JM, Kent JM, Sullivan GM, Coplan JD. Neuroanatomical hypothesis of panic disorder, revised. Am J Psychiatry. 2000;157(4):493–505. https://doi.org/10.1176/appi.ajp.157.4.493.

    Article  CAS  PubMed  Google Scholar 

  130. de Carvalho MR, Dias GP, Cosci F, de-Melo-Neto VL, Bevilaqua MC, Gardino PF, et al. Current findings of fMRI in panic disorder: contributions for the fear neurocircuitry and CBT effects. Expert Rev Neurother. 2010;10(2):291–303. https://doi.org/10.1586/ern.09.161.

    Article  PubMed  Google Scholar 

  131. Yoris A, Esteves S, Couto B, Melloni M, Kichic R, Cetkovich M, et al. The roles of interoceptive sensitivity and metacognitive interoception in panic. Behav Brain Funct. 2015;11:14. https://doi.org/10.1186/s12993-015-0058-8.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Limmer J, Kornhuber J, Martin A. Panic and comorbid depression and their associations with stress reactivity, interoceptive awareness and interoceptive accuracy of various bioparameters. J Affect Disord. 2015;185:170–9. https://doi.org/10.1016/j.jad.2015.07.010.

    Article  PubMed  Google Scholar 

  133. Domschke K, Stevens S, Pfleiderer B, Gerlach AL. Interoceptive sensitivity in anxiety and anxiety disorders: an overview and integration of neurobiological findings. Clin Psychol Rev. 2010;30(1):1–11. https://doi.org/10.1016/j.cpr.2009.08.008.

    Article  PubMed  Google Scholar 

  134. De Cort K, Schroijen M, Hurlemann R, Claassen S, Hoogenhout J, Van den Bergh O, et al. Modeling the development of panic disorder with interoceptive conditioning. Eur Neuropsychopharmacol. 2017;27(1):59–69. https://doi.org/10.1016/j.euroneuro.2016.11.001.

    Article  CAS  PubMed  Google Scholar 

  135. Boettcher H, Brake CA, Barlow DH. Origins and outlook of interoceptive exposure. J Behav Ther Exp Psychiatry. 2016;53:41–51. https://doi.org/10.1016/j.jbtep.2015.10.009.

    Article  PubMed  Google Scholar 

  136. Gorka SM, Nelson BD, Phan KL, Shankman SA. Insula response to unpredictable and predictable aversiveness in individuals with panic disorder and comorbid depression. Biology of mood & anxiety disorders. 2014;4:9. https://doi.org/10.1186/2045-5380-4-9.

    Article  Google Scholar 

  137. Sobanski T, Wagner G. Functional neuroanatomy in panic disorder: Status quo of the research. World J Psychiatry. 2017;7(1):12–33. https://doi.org/10.5498/wjp.v7.i1.12.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Cameron OG, Huang GC, Nichols T, Koeppe RA, Minoshima S, Rose D, et al. Reduced gamma-aminobutyric acid(A)-benzodiazepine binding sites in insular cortex of individuals with panic disorder. Arch Gen Psychiatry. 2007;64(7):793–800. https://doi.org/10.1001/archpsyc.64.7.793.

    Article  CAS  PubMed  Google Scholar 

  139. Shinoura N, Yamada R, Tabei Y, Otani R, Itoi C, Saito S, et al. Damage to the right dorsal anterior cingulate cortex induces panic disorder. J Affect Disord. 2011;133(3):569–72. https://doi.org/10.1016/j.jad.2011.04.029.

    Article  PubMed  Google Scholar 

  140. Dresler T, Guhn A, Tupak SV, Ehlis AC, Herrmann MJ, Fallgatter AJ, et al. Revise the revised? New dimensions of the neuroanatomical hypothesis of panic disorder. J Neural Transm (Vienna). 2013;120(1):3–29. https://doi.org/10.1007/s00702-012-0811-1.

    Article  CAS  Google Scholar 

  141. Kim JE, Dager SR, Lyoo IK. The role of the amygdala in the pathophysiology of panic disorder: evidence from neuroimaging studies. Biology of mood & anxiety disorders. 2012;2:20. https://doi.org/10.1186/2045-5380-2-20.

    Article  Google Scholar 

  142. Ottaviani C, Cevolani D, Nucifora V, Borlimi R, Agati R, Leonardi M, et al. Amygdala responses to masked and low spatial frequency fearful faces: a preliminary fMRI study in panic disorder. Psychiatry Res. 2012;203(2-3):159–65. https://doi.org/10.1016/j.pscychresns.2011.12.010.

    Article  PubMed  Google Scholar 

  143. Massana G, Serra-Grabulosa JM, Salgado-Pineda P, Gasto C, Junque C, Massana J, et al. Amygdalar atrophy in panic disorder patients detected by volumetric magnetic resonance imaging. NeuroImage. 2003;19(1):80–90.

    Article  PubMed  Google Scholar 

  144. Del Casale A, Serata D, Rapinesi C, Kotzalidis GD, Angeletti G, Tatarelli R, et al. Structural neuroimaging in patients with panic disorder: findings and limitations of recent studies. Psychiatr Danub. 2013;25(2):108–14.

    PubMed  Google Scholar 

  145. Pannekoek JN, van der Werff SJ, Stein DJ, van der Wee NJ. Advances in the neuroimaging of panic disorder. Hum Psychopharmacol. 2013;28(6):608–11. https://doi.org/10.1002/hup.2349.

    Article  PubMed  Google Scholar 

  146. VanElzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem. 2014;113:3–18. https://doi.org/10.1016/j.nlm.2013.11.014.

    Article  PubMed  Google Scholar 

  147. VanElzakker MB. Posttraumatic Stress Disorder. In: Neuroscience in the 21st Century: From Basic to Clinical; 2016. p. 4055–84.

    Chapter  Google Scholar 

  148. Garfinkel SN, Abelson JL, King AP, Sripada RK, Wang X, Gaines LM, et al. Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal. J Neurosci. 2014;34(40):13435–43. https://doi.org/10.1523/JNEUROSCI.4287-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Chung YA, Kim SH, Chung SK, Chae J-H, Yang DW, Sohn HS, et al. Alterations in cerebral perfusion in posttraumatic stress disorder patients without re-exposure to accident-related stimuli. Clin Neurophysiol. 2006;117(3):637–42.

    Article  PubMed  Google Scholar 

  150. Semple WE, Goyer PF, McCormick R, Donovan B, Muzic RF Jr, Rugle L, et al. Higher brain blood flow at amygdala and lower frontal cortex blood flow in PTSD patients with comorbid cocaine and alcohol abuse compared with normals. Psychiatry. 2000;63(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  151. Bryant RA, Kemp AH, Felmingham KL, Liddell B, Olivieri G, Peduto A, et al. Enhanced amygdala and medial prefrontal activation during nonconscious processing of fear in posttraumatic stress disorder: an fMRI study. Hum Brain Mapp. 2008;29(5):517–23. https://doi.org/10.1002/hbm.20415.

    Article  PubMed  Google Scholar 

  152. Shvil E, Rusch HL, Sullivan GM, Neria Y. Neural, psychophysiological, and behavioral markers of fear processing in PTSD: a review of the literature. Curr Psychiatry Rep. 2013;15(5):358.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Bremner JD, Vermetten E, Schmahl C, Vaccarino V, Vythilingam M, Afzal N, et al. Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol Med. 2005;35(6):791–806.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Linnman C, Zeffiro TA, Pitman RK, Milad MR. An fMRI study of unconditioned responses in post-traumatic stress disorder. Biol Mood Anxiety Disord. 2011;1(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Rougemont-Bucking A, Linnman C, Zeffiro TA, Zeidan MA, Lebron-Milad K, Rodriguez-Romaguera J, et al. Altered processing of contextual information during fear extinction in PTSD: an fMRI study. CNS Neurosci Ther. 2011;17(4):227–36. https://doi.org/10.1111/j.1755-5949.2010.00152.x.

    Article  PubMed  Google Scholar 

  156. Gold AL, Shin LM, Orr S, Carson M, Rauch S, Macklin M, et al. Decreased regional cerebral blood flow in medial prefrontal cortex during trauma-unrelated stressful imagery in Vietnam veterans with post-traumatic stress disorder. Psychol Med. 2011;41(12):2563–72.

    Article  CAS  PubMed  Google Scholar 

  157. Lissek S, Bradford DE, Alvarez RP, Burton P, Espensen-Sturges T, Reynolds RC, et al. Neural substrates of classically conditioned fear-generalization in humans: a parametric fMRI study. Soc Cogn Affect Neurosci. 2013;9(8):1134–42.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP, Southwick SM, et al. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry. 1995;152(7):973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Bremner JD, Randall P, Vermetten E, Staib L, Bronen RA, Mazure C, et al. Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse – a preliminary report. Biol Psychiatry. 1997;41(1):23–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Bremner JD, Vythilingam M, Vermetten E, Southwick SM, McGlashan T, Nazeer A, et al. MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. Am J Psychiatry. 2003;160(5):924–32.

    Article  PubMed  Google Scholar 

  161. Kitayama N, Vaccarino V, Kutner M, Weiss P, Bremner JD. Magnetic resonance imaging (MRI) measurement of hippocampal volume in posttraumatic stress disorder: a meta-analysis. J Affect Disord. 2005;88(1):79–86.

    Article  PubMed  Google Scholar 

  162. Kühn S, Gallinat J. Gray matter correlates of posttraumatic stress disorder: a quantitative meta-analysis. Biol Psychiatry. 2013;73(1):70–4.

    Article  PubMed  Google Scholar 

  163. Woon FL, Sood S, Hedges DW. Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: a meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2010;34(7):1181–8.

    Article  Google Scholar 

  164. Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB, Orr SP, et al. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci. 2002;5(11):1242–7. https://doi.org/10.1038/nn958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Babson KA, Feldner MT. Temporal relations between sleep problems and both traumatic event exposure and PTSD: a critical review of the empirical literature. J Anxiety Disord. 2010;24(1):1–15. https://doi.org/10.1016/j.janxdis.2009.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Wright KM, Britt TW, Bliese PD, Adler AB, Picchioni D, Moore D. Insomnia as predictor versus outcome of PTSD and depression among Iraq combat veterans. J Clin Psychol. 2011;67(12):1240–58. https://doi.org/10.1002/jclp.20845.

    Article  PubMed  Google Scholar 

  167. Pace-Schott EF, Germain A, Milad MR. Sleep and REM sleep disturbance in the pathophysiology of PTSD: the role of extinction memory. Biol Mood Anxiety Disord. 2015;5:3. https://doi.org/10.1186/s13587-015-0018-9.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Germain A, Buysse DJ, Nofzinger E. Sleep-specific mechanisms underlying posttraumatic stress disorder: integrative review and neurobiological hypotheses. Sleep Med Rev. 2008;12(3):185–95.

    Article  PubMed  Google Scholar 

  169. Mellman TA. Sleep and post-traumatic stress disorder: a roadmap for clinicians and researchers. Sleep Med Rev. 2008;12(3):165–7.

    Article  PubMed  Google Scholar 

  170. Spoormaker VI, Montgomery P. Disturbed sleep in post-traumatic stress disorder: secondary symptom or core feature? Sleep Med Rev. 2008;12(3):169–84.

    Article  PubMed  Google Scholar 

  171. Alvaro PK, Roberts RM, Harris JK. A systematic review assessing bidirectionality between sleep disturbances, anxiety, and depression. Sleep. 2013;36(7):1059–68. https://doi.org/10.5665/sleep.2810.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Babson KA, Badour CL, Feldner MT, Bunaciu L. The relationship of sleep quality and PTSD to anxious reactivity from idiographic traumatic event script-driven imagery. J Trauma Stress. 2012;25(5):503–10. https://doi.org/10.1002/jts.21739.

    Article  PubMed  Google Scholar 

  173. Babson KA, Blonigen DM, Boden MT, Drescher KD, Bonn-Miller MO. Sleep quality among U.S. military veterans with PTSD: a factor analysis and structural model of symptoms. J Trauma Stress. 2012;25(6):665–74. https://doi.org/10.1002/jts.21757.

    Article  PubMed  Google Scholar 

  174. Germain A. Sleep disturbances as the hallmark of PTSD: where are we now? Am J Psychiatry. 2013;170(4):372–82. https://doi.org/10.1176/appi.ajp.2012.12040432.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward F. Pace-Schott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daffre, C., Oliver, K.I., Pace-Schott, E.F. (2020). Neurocircuitry of Anxiety Disorders. In: Bui, E., Charney, M., Baker, A. (eds) Clinical Handbook of Anxiety Disorders. Current Clinical Psychiatry. Humana, Cham. https://doi.org/10.1007/978-3-030-30687-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30687-8_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-30686-1

  • Online ISBN: 978-3-030-30687-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics