Towards a Simulation Framework for Underwater Intervention Analysis and Training

  • Matthias TeschnerEmail author
  • Gabriel Zachmann
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 96)


The article discusses aspects of the potential utilization of computational fluid dynamics (CFD) in the context of underwater robotics. While CFD is an interdisciplinary research area, the article exclusively addresses the role of computer science (CS) research with a focus on CFD. Therefore, exemplary contributions of the CS research groups headed by the authors are discussed. The industrial applicability of previous research is briefly stated. Finally, challenges and open research questions towards a simulation framework for underwater intervention analysis and training are outlined. Potential application scenarios for CFD simulations in the area of underwater robotics are outlined throughout the manuscript.


  1. 1.
    Adami S, Hu X, Adams NA (2012) A generalized wall boundary condition for Smoothed Particle Hydrodynamics. J Comput Phys 231(21):7057–7075MathSciNetCrossRefGoogle Scholar
  2. 2.
    Akinci G, Ihmsen M, Akinci N, Teschner M (2012) Parallel surface reconstruction for particle-based fluids. Comput Graph Forum 31(6):1797–1809CrossRefGoogle Scholar
  3. 3.
    Akinci N, Dippel A, Akinci G, Teschner M (2013) Screen space foam rendering. J WSCG, 195–204Google Scholar
  4. 4.
    Akinci N, Ihmsen M, Akinci G, Solenthaler B, Teschner M (2012) Versatile rigid-fluid coupling for incompressible SPH. ACM Trans Graph (TOG) 31(4):62CrossRefGoogle Scholar
  5. 5.
    Altomare C, Viccione G, Tagliafierro B, Bovolin V, Domínguez JM, Crespo AJC (2018) Free-surface flow simulations with Smoothed Particle Hydrodynamics method using high-performance computing. In: Computational fluid dynamics-basic instruments and applications in science. InTech, pp 73–100Google Scholar
  6. 6.
    Band S, Gissler C, Ihmsen M, Cornelis J, Peer A, Teschner M (2018) Pressure boundaries for implicit incompressible SPH. ACM Trans Graph (TOG) 37(2):14CrossRefGoogle Scholar
  7. 7.
    Band S, Gissler C, Peer A, Teschner M (2018) MLS pressure boundaries for divergence-free and viscous SPH fluids. Comput Graph 76:37–46CrossRefGoogle Scholar
  8. 8.
    Bonet J, Lok TS (1999) Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations. Comput Methods Appl Mech Eng 180(1–2):97–115MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cornelis J, Bender J, Gissler C, Ihmsen M, Teschner M (2018) An optimized source term formulation for incompressible SPH. Vis Comput, 1–11Google Scholar
  10. 10.
    FIFTY2 Technology: Terrain 2-Up to 500 million particles with PreonLab (FIFTY2).
  11. 11.
    FIFTY2 Technology: PreonLab (2018).
  12. 12.
    Gingold R, Monaghan J (1977) Smoothed Particle Hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–398CrossRefGoogle Scholar
  13. 13.
    Gissler C, Peer A, Band S, Teschner M (2018) Interlinked SPH pressure solvers for strong fluid-rigid coupling. ACM Trans Graph (TOG), 1–14Google Scholar
  14. 14.
    Horvath CJ, Solenthaler B (2013) Mass preserving multi-scale SPH. Pixar Tech Memo (13-04)Google Scholar
  15. 15.
    Ihmsen M, Akinci N, Becker M, Teschner M (2011) A parallel SPH implementation on multi-core CPUs. Comput Graph Forum 30(1):99–112CrossRefGoogle Scholar
  16. 16.
    Ihmsen M, Cornelis J, Solenthaler B, Horvath C, Teschner M (2014) Implicit incompressible SPH. IEEE Trans Vis Comput Graph 20(3):426–435CrossRefGoogle Scholar
  17. 17.
    Ihmsen M, Wahl A, Teschner M (2012) High-resolution simulation of granular material with SPH. In: VRIPHYS, pp 53–60Google Scholar
  18. 18.
    Kraft EM (2010) After 40 years why hasn’t the computer replaced the wind tunnel? Technical report, Arnold Engineering Development CenterGoogle Scholar
  19. 19.
    Lucy L (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024CrossRefGoogle Scholar
  20. 20.
    Nestor R, Basa M, Quinlan N (2008) Moving boundary problems in the finite volume particle method. In: SPHERIC, pp 118–123Google Scholar
  21. 21.
    Peer A, Gissler C, Band S, Teschner M (2018) An implicit SPH formulation for incompressible linearly elastic solids. Comput Graph Forum 37(6):135–148CrossRefGoogle Scholar
  22. 22.
    Peer A, Ihmsen M, Cornelis J, Teschner M (2015) An implicit viscosity formulation for SPH fluids. ACM Trans Graph (TOG) 34(4):114:1–114:10Google Scholar
  23. 23.
    Peer A, Teschner M (2017) Prescribed velocity gradients for highly viscous SPH fluids with vorticity diffusion. IEEE Trans Vis Comput Graph 23(12):2656–2662CrossRefGoogle Scholar
  24. 24.
    Skillen A, Lind S, Stansby PK, Rogers BD (2013) Incompressible Smoothed Particle Hydrodynamics (SPH) with reduced temporal noise and generalised fickian smoothing applied to body-water slam and efficient wave-body interaction. Comput Methods Appl Mech Eng 265:163–173MathSciNetCrossRefGoogle Scholar
  25. 25.
    Verlet L (1967) Computer “experiments” on classical fluids. i. thermodynamical properties of lennard-jones molecules. Phys Rev 159(1):98Google Scholar
  26. 26.
    Winchenbach R, Hochstetter H, Kolb A (2017) Infinite continuous adaptivity for incompressible SPH. ACM Trans Graph (TOG) 36(4):102CrossRefGoogle Scholar
  27. 27.
    Xu R, Stansby P, Laurence D (2009) Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J Comput Phys 228(18):6703–6725MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of FreiburgBreisgauGermany
  2. 2.Computer Science DepartmentUniversity of BremenBremenGermany

Personalised recommendations