Advertisement

Challenges in Underwater Visual Navigation and SLAM

  • Kevin KöserEmail author
  • Udo FreseEmail author
Chapter
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 96)

Abstract

This paper addresses visual navigation of autonomous underwater vehicles (AUVs) with and without a given map, where the latter is called Simultaneous Localization and Mapping (SLAM). We summarize the challenges and opportunities in underwater environments that make visual navigation different from land navigation and also briefly survey the current state-of-the-art in this area. Then as a position paper we argue why many of these challenges could be met by a proper modeling of uncertainties in the SLAM representation. This would in particular allow the SLAM algorithm to thoroughly handle the ambiguity between “I see the same feature again.”, “I see a different but similar looking feature.” and “The environment has changed and the feature moved.”.

References

  1. 1.
    Agrawal A, Ramalingam S, Taguchi Y, Chari V (2012) A theory of multi-layer flat refractive geometry. In: CVPRGoogle Scholar
  2. 2.
    Aguirre F, Boucher JM, Jacq JJ (1990) Underwater navigation by video sequence analysis. In: Proceedings of 10th international conference on pattern recognition, vol 2, pp. 537–539.  https://doi.org/10.1109/ICPR.1990.119424
  3. 3.
    Alsayed Z, Bresson G, Verroust-Blondet A, Nashashibi F (2017) Failure detection for laser-based SLAM in urban and peri-urban environments. In: 20th international conference on intelligent transportation systems (ITSC), pp 1–7Google Scholar
  4. 4.
    Bryson M, Johnson-Roberson M, Pizarro O, Williams SB (2016) True color correction of autonomous underwater vehicle imagery. J Field Robot 33(6):853–874CrossRefGoogle Scholar
  5. 5.
    Campos R, Garcia R, Alliez P, Yvinec M (2015) A surface reconstruction method for in-detail underwater 3d optical mapping. Int J Robot Res 34(1):64–89CrossRefGoogle Scholar
  6. 6.
    Drap P (2012) Underwater photogrammetry for archaeology. In: Da Silva DC (ed) Special applications of photogrammetry, chap 6, IntechOpen, Rijeka . https://doi.org/10.5772/33999
  7. 7.
    Fairfield N, Kantor G, Jonak D, Wettergreen D (2008) DEPTHX autonomy software: design and field results. Tech Rep CMU-RI-TR-08-09, Carnegie Mellon UniversityGoogle Scholar
  8. 8.
    Frese U (2006) A discussion of simultaneous localization and mapping. Autonom Robots 20(1):25–42. (22 citations)Google Scholar
  9. 9.
    Harvey ES, Shortis MR (1998) Calibration stability of an underwater stereo-video system: implications for measurement accuracy and precision. Mar Technol Soc J 32:3–17Google Scholar
  10. 10.
    Jaffe JS (1990) Computer modeling and the design of optimal underwater imaging systems. IEEE J Ocean Eng 15(2):101–111.  https://doi.org/10.1109/48.50695CrossRefGoogle Scholar
  11. 11.
    Johnson-Roberson M, Pizarro O, Williams SB, Mahon I (2010) Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. J Field Robot 27(1):21–51CrossRefGoogle Scholar
  12. 12.
    Jordt A, Köser K, Koch R (2016) Refractive 3d reconstruction on underwater images. Methods Oceanogr 15:90–113.  https://doi.org/10.1016/j.mio.2016.03.001. http://www.sciencedirect.com/science/article/pii/S2211122015300086. Computer Vision in Oceanography
  13. 13.
    Kinsey JC, Eustice RM (2006) A survey of underwater vehicle navigation: recent advances and new challenges. In: IFAC conference of Manoeuvering and control of marine craftGoogle Scholar
  14. 14.
    Kotowski, R (1988) Phototriangulation in multi-media photogrammetry. In: Int’l archives of Photogrammetry and remote sensing, XXVIIGoogle Scholar
  15. 15.
    Kümmerle R, Steder B, Dornhege C, Ruhnke M, Grisetti G, Stachniss C, Kleiner A (2009) On measuring the accuracy of SLAM algorithms. Auton Robot 27(4):387CrossRefGoogle Scholar
  16. 16.
    Leonard JJ, Bahr A (2016) Autonomous underwater vehicle navigation. In: Springer handbook of ocean engineering, Chap 14, Springer pp 341–358Google Scholar
  17. 17.
    Li J, Eustice RM, Johnson-Roberson M (2015) Underwater robot visual place recognition in the presence of dramatic appearance change. In: OCEANS 2015—MTS/IEEE Washington, pp 1–6  https://doi.org/10.23919/OCEANS.2015.7404369
  18. 18.
    McGlamery BL (1975) Computer analysis and simulation of underwater camera system performance. Tech rep, Visibility Laboratory, Scripps Institution of Oceanography, University of California in San DiegoGoogle Scholar
  19. 19.
    Milford M, Wyeth G (2010) Persistent navigation and mapping using a biologically inspired SLAM system. Int J Robot Res 29(9):1131–1153.  https://doi.org/10.1177/0278364909340592CrossRefGoogle Scholar
  20. 20.
    Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic PressGoogle Scholar
  21. 21.
    Nicosevici T, Gracias N, Negahdaripour S, Garcia R (2009) Efficient three-dimensional scene modeling and mosaicing. J Field Robot 26(10):759–788.  https://doi.org/10.1002/rob.20305. https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.20305
  22. 22.
    Pfingsthorn M, Birk A (2016) Generalized graph SLAM: solving local and global ambiguities through multimodal and hyperedge constraints. Int J Robot Res 35(6):601–630CrossRefGoogle Scholar
  23. 23.
    Pfingsthorn M, Birk A, Buelow H (2012) Uncertainty estimation for a 6-DoF spectral registration method as basis for sonar-based underwater 3D SLAM. In: IEEE international conference on robotics and automation (ICRA) pp 3049–3054Google Scholar
  24. 24.
    Pizarro O, Eustice R, Singh H (2004) Large area 3d reconstructions from underwater surveys. In: MTS/IEEE OCEANS conference and exhibition, pp 678–687, CiteseerGoogle Scholar
  25. 25.
    Sedlazeck A, Köser K, Koch R (2009) 3D reconstruction based on underwater video from ROV kiel 6000 considering underwater imaging conditions. In: proceedings of OCEANS 2009-EUROPE, pp 1–10  https://doi.org/10.1109/OCEANSE.2009.5278305
  26. 26.
    Singh H, Roman C, Pizarro O, Eustice R, Can A (2007) Towards high-resolution imaging from underwater vehicles. Int J Robot Res 26(1):55–74.  https://doi.org/10.1177/0278364907074473
  27. 27.
    Steinke DM, Buckham BJ (2005) A Kalman filter for the navigation of remotely operated vehicles. In: Proceedings of OCEANS 2005 MTS/IEEE, Vol 1, pp 581–588  https://doi.org/10.1109/OCEANS.2005.1639817
  28. 28.
    Treibitz T, Schechner Y, Kunz C, Singh H (2012) Flat refractive geometry. IEEE Trans Pattern Anal Mach Intell 34(1):51–65.  https://doi.org/10.1109/TPAMI.2011.105CrossRefGoogle Scholar
  29. 29.
    Łuczyński T, Pfingsthorn M, Birk A (2017) The pinax-model for accurate and efficient refraction correction of underwater cameras in flat-pane housings. Ocean Eng 133:9–22.  https://doi.org/10.1016/j.oceaneng.2017.01.029. http://www.sciencedirect.com/science/article/pii/S0029801817300434
  30. 30.
    Vincent AG, Pessel N, Borgetto M, Jouffroy J, Opderbecke J, Rigaud V (2003) Real-time geo-referenced video mosaicking with the matisse system. In: Oceans 2003, Celebrating the Past...Teaming Toward the Future (IEEE Cat No.03CH37492), vol 4, pp 2319–2324  https://doi.org/10.1109/OCEANS.2003.178271
  31. 31.
    Williams SB, Pizarro OR, Jakuba MV, Johnson CR, Barrett NS, Babcock RC, Kendrick GA, Steinberg PD, Heyward AJ, Doherty PJ et al (2012) Monitoring of benthic reference sites: using an autonomous underwater vehicle. IEEE Robot Autom Mag 19(1):73–84CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.University of BremenBremenGermany

Personalised recommendations