Advertisement

A Biofilm-Based Approach to the Diagnosis and Management of Postoperative Spine Infection

  • Jeremy D. Shaw
Chapter

Abstract

Postoperative spine infections are a devastating surgical complication. Historical literature reports postoperative infection rates as high as 20%. Improved surgical techniques and the use of intrawound vancomycin powder have dropped rates in recent years. Importantly, patients who experience a postoperative spine infection have a poorer perceived outcome of their surgery even if it is ultimately successful. In an era of patient-reported outcomes (PROs) driving practice patterns and an aging population undergoing increasing rates of high complexity spine surgery, infection, often complicated by biofilms, remains a key target for quality improvement. This article outlines contemporary standard of care practices for the diagnosis and treatment of postoperative spine infection with an emphasis on emerging concepts and broadly applicable surgical techniques including methylene blue staining as a disclosing agent to identify biofilm-burdened regions.

Keywords

Spine surgery Infection Deep spine infection Osteomyelitis Diskitis Biofilm 

References

  1. 1.
    El-Gindi, S., Aref, S., Salama, M., & Andrew, J. (1976). Infection of intervertebral discs after operation. Journal of Bone and Joint Surgery, 58, 114.CrossRefGoogle Scholar
  2. 2.
    Pilgaard, S. (1969). Discitis (closed space infection) following removal of lumbar intervertebral disc. The Journal of Bone and Joint Surgery. American Volume, 51, 713.  https://doi.org/10.2106/00004623-196951040-00009.CrossRefPubMedGoogle Scholar
  3. 3.
    Lindholm, T. S., & Pylkkänen, P. (1982). Discitis following removal of intervertebral disc. Spine (Phila Pa 1976), 7, 618.  https://doi.org/10.1097/00007632-198211000-00018.CrossRefGoogle Scholar
  4. 4.
    Stolke, D., Sollmann, W. P., & Seifert, V. (1989). Intra- and postoperative complications in lumbar disc surgery. Spine (Phila Pa 1976), 14, 56.  https://doi.org/10.1097/00007632-198901000-00011.CrossRefGoogle Scholar
  5. 5.
    Smith, J. S., Shaffrey, C. I., Sansur, C. A., Berven, S. H., Fu, K. M. G., Broadstone, P. A., et al. (2011). Rates of infection after spine surgery based on 108,419 procedures: A report from the Scoliosis Research Society morbidity and mortality committee. Spine (Phila Pa 1976), 36, 556.  https://doi.org/10.1097/BRS.0b013e3181eadd41.CrossRefGoogle Scholar
  6. 6.
    Heller, A., McIff, T. E., Lai, S. M., & Burton, D. C. (2015). Intrawound vancomycin powder decreases staphylococcal surgical site infections after posterior instrumented spinal arthrodesis. Journal of Spinal Disorders & Techniques, 28, E584.  https://doi.org/10.1097/BSD.0000000000000045.CrossRefGoogle Scholar
  7. 7.
    Chiang, H. Y., Herwaldt, L. A., Blevins, A. E., Cho, E., & Schweizer, M. L. (2014). Effectiveness of local vancomycin powder to decrease surgical site infections: A meta-analysis. The Spine Journal, 14, 397.  https://doi.org/10.1016/j.spinee.2013.10.012.CrossRefPubMedGoogle Scholar
  8. 8.
    Caroom, C., Tullar, J. M., Benton, E. G., Jones, J. R., & Chaput, C. D. (2013). Intrawound vancomycin powder reduces surgical site infections in posterior cervical fusion. Spine (Phila Pa 1976), 38, 1183.  https://doi.org/10.1097/BRS.0b013e31828fcfb5.CrossRefGoogle Scholar
  9. 9.
    Evaniew, N., Khan, M., Drew, B., Peterson, D., Bhandari, M., & Ghert, M. (2015). Intrawound vancomycin to prevent infections after spine surgery: A systematic review and meta-analysis. European Spine Journal, 24, 533.  https://doi.org/10.1007/s00586-014-3357-0.CrossRefPubMedGoogle Scholar
  10. 10.
    Khan, N. R., Thompson, C. J., DeCuypere, M., Angotti, J. M., Kalobwe, E., Muhlbauer, M. S., et al. (2014). A meta-analysis of spinal surgical site infection and vancomycin powder. Journal of Neurosurgery. Spine, 21, 974.  https://doi.org/10.3171/2014.8.SPINE1445.CrossRefPubMedGoogle Scholar
  11. 11.
    Sing, D. C., Khanna, R., Shaw, J. D., Metz, L. N., Burch, S., & Berven, S. H. (2016). Increasing rates of surgical management of multilevel spinal curvature in elderly patients. Spine Deformity, 4, 365–372.  https://doi.org/10.1016/j.jspd.2016.03.005.CrossRefPubMedGoogle Scholar
  12. 12.
    Hart, R. A., Cabalo, A., Bess, S., Akbarnia, B. A., Boachie-Adjei, O., Burton, D., et al. (2013). Comparison of patient and surgeon perceptions of adverse events after adult spinal deformity surgery. Spine (Phila Pa 1976), 38, 732.  https://doi.org/10.1097/BRS.0b013e31827ae242.CrossRefGoogle Scholar
  13. 13.
    Petilon, J. M., Glassman, S. D., Dimar, J. R., & Carreon, L. Y. (2012). Clinical outcomes after lumbar fusion complicated by deep wound infection: A case-control study. Spine (Phila Pa 1976), 37, 1370.  https://doi.org/10.1097/BRS.0b013e31824a4d93.CrossRefGoogle Scholar
  14. 14.
    Falavigna, A., Righesso, O., Traynelis, V. C., Teles, A. R., & da Silva, P. G. (2011). Effect of deep wound infection following lumbar arthrodesis for degenerative disc disease on long-term outcome: A prospective study: Clinical article. Journal of Neurosurgery Spine, 15, 399.  https://doi.org/10.3171/2011.5.SPINE10825.CrossRefPubMedGoogle Scholar
  15. 15.
    Mirza, S. K., Deyo, R. A., Heagerty, P. J., Konodi, M. A., Lee, L. A., Turner, J. A., et al. (2008). Development of an index to characterize the “invasiveness” of spine surgery: Validation by comparison to blood loss and operative time. Spine (Phila Pa 1976), 33, 2651.  https://doi.org/10.1097/BRS.0b013e31818dad07.CrossRefGoogle Scholar
  16. 16.
    Cizik, A. M., Lee, M. J., Martin, B. I., Bransford, R. J., Bellabarba, C., Chapman, J. R., et al. (2012). Using the spine surgical invasiveness index to identify risk of surgical site infection: A multivariate analysis. The Journal of Bone and Joint Surgery. American Volume, 94, 335–342.  https://doi.org/10.2106/JBJS.J.01084.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Garfin, S., Eismont, F., Bell, G., & Bono, C. F. J. (2017). Rothman-Simeone and Herkowitz’s The Spine. Philadelphia: Elsevier.Google Scholar
  18. 18.
    Weinstein, J. N., Tosteson, T. D., Lurie, J. D., Tosteson, A., Blood, E., Herkowitz, H., et al. (2010). Surgical versus nonoperative treatment for lumbar spinal stenosis four-year results of the spine patient outcomes research trial. Spine (Phila Pa 1976), 35, 1329.  https://doi.org/10.1097/BRS.0b013e3181e0f04d.CrossRefGoogle Scholar
  19. 19.
    Weinstein, J. N., Tosteson, T. D., Lurie, J. D., Tosteson, A. N. A., Hanscom, B., Skinner, J. S., et al. (2006). Surgical vs nonoperative treatment for lumbar disk herniation: the Spine Patient Outcomes Research Trial (SPORT): a randomized trial. JAMA, 296, 2441.  https://doi.org/10.1001/jama.296.20.2441.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Patel, H., Khoury, H., Girgenti, D., Welner, S., & Yu, H. (2017). Burden of surgical site infections associated with select spine operations and involvement of Staphylococcus aureus. Surgical Infections, 18, 461.  https://doi.org/10.1089/sur.2016.186.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sciubba, D. M., Yurter, A., Smith, J. S., Kelly, M. P., Scheer, J. K., Goodwin, C. R., et al. (2015). A comprehensive review of complication rates after surgery for adult deformity: A reference for informed consent. Spine Deformity, 3, 575.  https://doi.org/10.1016/j.jspd.2015.04.005.CrossRefPubMedGoogle Scholar
  22. 22.
    Radcliff, K. E., Neusner, A. D., Millhouse, P. W., Harrop, J. D., Kepler, C. K., Rasouli, M. R., et al. (2015). What is new in the diagnosis and prevention of spine surgical site infections. The Spine Journal, 15, 336.  https://doi.org/10.1016/j.spinee.2014.09.022.CrossRefPubMedGoogle Scholar
  23. 23.
    Kälicke, T., Schlegel, U., Printzen, G., Schneider, E., Muhr, G., & Arens, S. (2003). Influence of a standardized closed soft tissue trauma on resistance to local infection. An experimental study in rats. Journal of Orthopaedic Research, 21, 373.  https://doi.org/10.1016/S0736-0266(02)00149-3.CrossRefPubMedGoogle Scholar
  24. 24.
    Gentile, L. F., Cuenca, A. G., Efron, P. A., Ang, D., Bihorac, A., McKinley, B. A., et al. (2012). Persistent inflammation and immunosuppression: A common syndrome and new horizon for surgical intensive care. Journal of Trauma and Acute Care Surgery, 72, 1491.  https://doi.org/10.1097/TA.0b013e318256e000.CrossRefPubMedGoogle Scholar
  25. 25.
    Blam, O. G., Vaccaro, A. R., Vanichkachorn, J. S., Albert, T. J., Hilibrand, A. S., Minnich, J. M., et al. (2003). Risk factors for surgical site infection in the patient with spinal injury. Spine (Phila Pa 1976), 28, 1475.  https://doi.org/10.1097/01.BRS.0000067109.23914.0A.CrossRefGoogle Scholar
  26. 26.
    Rechtine, G. R., Bono, P. L., Cahill, D., Bolesta, M. J., & Chrin, A. M. (2001). Postoperative wound infection after instrumentation of thoracic and lumbar fractures. Journal of Orthopaedic Trauma, 15, 566.  https://doi.org/10.1097/00005131-200111000-00006.CrossRefPubMedGoogle Scholar
  27. 27.
    Ghobrial, G. M., Maulucci, C. M., Maltenfort, M., Dalyai, R. T., Vaccaro, A. R., Fehlings, M. G., et al. (2014). Operative and nonoperative adverse events in the management of traumatic fractures of the thoracolumbar spine: a systematic review. Neurosurgical Focus, 37, E8.  https://doi.org/10.3171/2014.4.FOCUS1467.CrossRefPubMedGoogle Scholar
  28. 28.
    Omeis, I. A., Dhir, M., Sciubba, D. M., Gottfried, O. N., McGirt, M. J., Attenello, F. J., et al. (2011). Postoperative surgical site infections in patients undergoing spinal tumor surgery: Incidence and risk factors. Spine (Phila Pa 1976), 36, 1410.  https://doi.org/10.1097/BRS.0b013e3181f48fa9.CrossRefGoogle Scholar
  29. 29.
    McPhee, I. B., Williams, R. P., & Swanson, C. E. (1998). Factors influencing wound healing after surgery for metastatic disease of the spine. Spine (Phila Pa 1976), 23, 726.  https://doi.org/10.1097/00007632-199803150-00015.CrossRefGoogle Scholar
  30. 30.
    Schuster, J. M., Rechtine, G., Norvell, D. C., & Dettori, J. R. (2010). The influence of perioperative risk factors and therapeutic interventions on infection rates after spine surgery: A systematic review. Spine (Phila Pa 1976), 35, S125.  https://doi.org/10.1097/BRS.0b013e3181d8342c.CrossRefGoogle Scholar
  31. 31.
    O’Toole, J. E., Eichholz, K. M., & Fessler, R. G. (2009). Surgical site infection rates after minimally invasive spinal surgery. Journal of Neurosurgery. Spine, 11, 471.  https://doi.org/10.3171/2009.5.SPINE08633.CrossRefPubMedGoogle Scholar
  32. 32.
    Parker, S. L., Adogwa, O., Witham, T. F., Aaronson, O. S., Cheng, J., & McGirt, M. J. (2011). Post-operative infection after minimally invasive versus open transforaminal lumbar interbody fusion (TLIF): Literature review and cost analysis. Minimally Invasive Neurosurgery, 54, 33.  https://doi.org/10.1055/s-0030-1269904.CrossRefPubMedGoogle Scholar
  33. 33.
    McGirt, M. J., Parker, S. L., Lerner, J., Engelhart, L., Knight, T., & Wang, M. Y. (2011). Comparative analysis of perioperative surgical site infection after minimally invasive versus open posterior/transforaminal lumbar interbody fusion: Analysis of hospital billing and discharge data from 5170 patients. Journal of Neurosurgery. Spine, 14, 771.  https://doi.org/10.3171/2011.1.SPINE10571.CrossRefPubMedGoogle Scholar
  34. 34.
    Ali, R., Schwalb, J. M., Nerenz, D. R., Antoine, H. J., & Rubinfeld, I. (2016). Use of the modified frailty index to predict 30-day morbidity and mortality from spine surgery. Journal of Neurosurgery. Spine, 25, 537.  https://doi.org/10.3171/2015.10.SPINE14582.CrossRefPubMedGoogle Scholar
  35. 35.
    Pull ter Gunne, A. F., Hosman, A. J. F., Cohen, D. B., Schuetz, M., Habil, D., van Laarhoven, C. J. H. M., et al. (2012). A methodological systematic review on surgical site infections following spinal surgery: part 1: risk factors. Spine (Phila Pa 1976), 37, 2017.  https://doi.org/10.1097/BRS.0b013e31825bfca8.CrossRefGoogle Scholar
  36. 36.
    Mok, J. M., Pekmezci, M., Piper, S. L., Boyd, E., Berven, S. H., Burch, S., et al. (2008). Use of C-reactive protein after spinal surgery: Comparison with erythrocyte sedimentation rate as predictor of early postoperative infectious complications. Spine (Phila Pa 1976), 33, 415.  https://doi.org/10.1097/BRS.0b013e318163f9ee.CrossRefGoogle Scholar
  37. 37.
    Choi, M. K., Kim, S. B., Kim, K. D., & Ament, J. D. (2014). Sequential changes of plasma c-reactive protein, Erythrocyte sedimentation rate and white blood cell count in spine surgery : Comparison between lumbar open discectomy and posterior lumbar interbody fusion. Journal of Korean Neurosurgical Association, 56, 218.  https://doi.org/10.3340/jkns.2014.56.3.218.CrossRefGoogle Scholar
  38. 38.
    Thelander, U., & Larsson, S. (1992). Quantitation of C-reactive protein levels and erythrocyte sedimentation rate after spinal surgery. Spine (Phila Pa 1976), 17, 400.CrossRefGoogle Scholar
  39. 39.
    Deguchi, M., Shinjo, R., Yoshioka, Y., & Seki, H. (2010). The usefulness of serum amyloid A as a postoperative inflammatory marker after posterior lumbar interbody fusion. Journal of Bone and Joint Surgery. British Volume (London), 92, 555.  https://doi.org/10.1302/0301-620X.92B4.22807.CrossRefGoogle Scholar
  40. 40.
    Nie, H., Jiang, D., Ou, Y., Quan, Z., Hao, J., Bai, C., et al. (2011). Procalcitonin as an early predictor of postoperative infectious complications in patients with acute traumatic spinal cord injury. Spinal Cord, 49, 715.  https://doi.org/10.1038/sc.2010.190.CrossRefPubMedGoogle Scholar
  41. 41.
    Berbari, E., Mabry, T., Tsaras, G., Spangehl, M., Erwin, P. J., Murad, M. H., et al. (2010). Inflammatory blood laboratory levels as markers of prosthetic joint infection: A systematic review and meta-analysis. The Journal of Bone and Joint Surgery. American Volume, 92, 2102.  https://doi.org/10.2106/JBJS.I.01199.CrossRefPubMedGoogle Scholar
  42. 42.
    Sponseller, P. D., LaPorte, D. M., Hungerford, M. W., Eck, K., Bridwell, K. H., & Lenke, L. G. (2000). Deep wound infections after neuromuscular scoliosis surgery: A multicenter study of risk factors and treatment outcomes. Spine (Phila Pa 1976), 25, 2461.  https://doi.org/10.1097/00007632-200010010-00007.CrossRefGoogle Scholar
  43. 43.
    Tarabichi, M., Shohat, N., Goswami, K., Alvand, A., Silibovsky, R., Belden, K., et al. (2018). Diagnosis of periprosthetic joint infection: The potential of next-generation sequencing. The Journal of Bone and Joint Surgery. American Volume, 100, 147.  https://doi.org/10.2106/JBJS.17.00434.CrossRefPubMedGoogle Scholar
  44. 44.
    Bémer, P., Plouzeau, C., Tande, D., Léger, J., Giraudeau, B., Valentin, A. S., et al. (2014). Evaluation of 16S rRNA gene PCR sensitivity and specificity for diagnosis of prosthetic joint infection: A prospective multicenter cross-sectional study. Journal of Clinical Microbiology, 52, 3583.  https://doi.org/10.1128/JCM.01459-14.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gomez, E., Cazanave, C., Cunningham, S. A., Greenwood-Quaintance, K. E., Steckelberg, J. M., Uhl, J. R., et al. (2012). Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. Journal of Clinical Microbiology, 50, 3501.  https://doi.org/10.1128/JCM.00834-12.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Jacovides, C. L., Kreft, R., Adeli, B., Hozack, B., Ehrlich, G. D., & Parvizi, J. (2012). Successful identification of pathogens by polymerase chain reaction (PCR)-based electron spray ionization time-of-flight mass spectrometry (ESI-TOF-MS) in culture-negative periprosthetic joint infection. The Journal of Bone and Joint Surgery. American Volume, 94, 2247.  https://doi.org/10.2106/JBJS.L.00210.CrossRefPubMedGoogle Scholar
  47. 47.
    Parvizi, J., & Gehrke, T. (2014). Definition of periprosthetic joint infection. The Journal of Arthroplasty, 29, 1331.  https://doi.org/10.1016/j.arth.2014.03.009.CrossRefPubMedGoogle Scholar
  48. 48.
    Parvizi, J., Tan, T. L., Goswami, K., Higuera, C., Della Valle, C., Chen, A. F., et al. (2018). The 2018 definition of periprosthetic hip and knee infection: An evidence-based and validated criteria. The Journal of Arthroplasty, 33, 1309.  https://doi.org/10.1016/j.arth.2018.02.078.CrossRefPubMedGoogle Scholar
  49. 49.
    Parvizi, J., Zmistowski, B., Berbari, E. F., Bauer, T. W., Springer, B. D., Della Valle, C. J., et al. (2011). New definition for periprosthetic joint infection: From the workgroup of the musculoskeletal infection society. Clinical Orthopaedics and Related Research, 469, 2992–2994.  https://doi.org/10.1007/s11999-011-2102-9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Silber, J. S., Anderson, D. G., Vaccaro, A. R., Anderson, P. A., & McCormick, P. (2002). Management of postprocedural discitis. The Spine Journal, 2, 279.  https://doi.org/10.1016/S1529-9430(02)00203-6.CrossRefPubMedGoogle Scholar
  51. 51.
    Inanami, H., Oshima, Y., Iwahori, T., Takano, Y., Koga, H., & Iwai, H. (2015). Role of 18F-Fluoro-D-deoxyglucose PET/CT in diagnosing surgical site infection after spine surgery with instrumentation. Spine (Phila Pa 1976), 40, 109–113.  https://doi.org/10.1097/BRS.0000000000000674.CrossRefGoogle Scholar
  52. 52.
    Dauchy, F.-A., Dutertre, A., Lawson-Ayayi, S., de Clermont-Gallerande, H., Fournier, C., Zanotti-Fregonara, P., et al. (2016). Interest of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for the diagnosis of relapse in patients with spinal infection: a prospective study. Clinical Microbiology and Infection, 22, 438–443.  https://doi.org/10.1016/J.CMI.2015.12.028.CrossRefPubMedGoogle Scholar
  53. 53.
    De Winter, F., Gemmel, F., Van De Wiele, C., Poffijn, B., Uyttendaele, D., & Dierckx, R. (2003). 18-Fluorine Fluorodeoxyglucose Positron Emission Tomography for the Diagnosis of Infection in the Postoperative Spine. Spine (Phila Pa 1976), 28, 1314–1319.  https://doi.org/10.1097/01.BRS.0000065483.07790.34.CrossRefGoogle Scholar
  54. 54.
    Kim, S.-J., Lee, S. H., Chung, H. W., Lee, M. H., Shin, M. J., & Park, S. W. (2017). Magnetic resonance imaging patterns of post-operative spinal infection: relationship between the clinical onset of infection and the infection site. Journal of Korean Neurosurgical Association, 60, 448–455.  https://doi.org/10.3340/jkns.2015.0505.010.CrossRefGoogle Scholar
  55. 55.
    Djukic, S., Genant, H. K., Helms, C. A., & Holt, R. G. (1990). Magnetic resonance imaging of the postoperative lumbar spine. Radiologic Clinics of North America, 28, 341–360.PubMedGoogle Scholar
  56. 56.
    Boden, S. D., Davis, D. O., Dina, T. S., Sunner, J. L., & Wiesel, S. W. (1992). Postoperative diskitis: distinguishing early MR imaging findings from normal postoperative disk space changes. Radiology, 184, 765.  https://doi.org/10.1148/radiology.184.3.1509065.CrossRefPubMedGoogle Scholar
  57. 57.
    Kimura, H., Shikata, J., Odate, S., & Soeda, T. (2017). Pedicle screw fluid sign: An indication on magnetic resonance imaging of a deep infection after posterior spinal instrumentation. Clinical Spine Surgery, 30, 169.  https://doi.org/10.1097/BSD.0000000000000040.CrossRefPubMedGoogle Scholar
  58. 58.
    Diehn, F. E. (2012). Imaging of spine infection. Radiologic Clinics of North America, 50, 777–798.  https://doi.org/10.1016/j.rcl.2012.04.001.CrossRefPubMedGoogle Scholar
  59. 59.
    Ganesh, D., Gottlieb, J., Chan, S., Martinez, O., & Eismont, F. (2015). Fungal infections of the spine. Spine (Phila Pa 1976), 40, E719.  https://doi.org/10.1097/BRS.0000000000000903.CrossRefGoogle Scholar
  60. 60.
    Koutsoumbelis, S., Hughes, A. P., Girardi, F. P., Cammisa, F. P., Finerty, E. A., Nguyen, J. T., et al. (2011). Risk factors for postoperative infection following posterior lumbar instrumented arthrodesis. The Journal of Bone and Joint Surgery. American, 93, 1627.  https://doi.org/10.2106/JBJS.J.00039.CrossRefGoogle Scholar
  61. 61.
    Adogwa, O., Elsamadicy, A. A., Sergesketter, A., Vuong, V. D., Mehta, A. I., Vasquez, R. A., et al. (2017). Prophylactic use of intraoperative vancomycin powder and postoperative infection: An analysis of microbiological patterns in 1200 consecutive surgical cases. Journal of Neurosurgery. Spine, 27, 328.  https://doi.org/10.3171/2017.2.SPINE161310.CrossRefPubMedGoogle Scholar
  62. 62.
    Grabel, Z. J., Boden, A., Segal, D. N., Boden, S., Milby, A. H., & Heller, J. G. (2018). The impact of prophylactic intraoperative vancomycin powder on microbial profile, antibiotic regimen, length of stay, and reoperation rate in elective spine surgery. The Spine Journal, 19, 261.  https://doi.org/10.1016/j.spinee.2018.05.036.CrossRefPubMedGoogle Scholar
  63. 63.
    Butler-Wu, S. M., Burns, E. M., Pottinger, P. S., Magaret, A. S., Rakeman, J. L., Matsen, F. A., et al. (2011). Optimization of periprosthetic culture for diagnosis of Propionibacterium acnes prosthetic joint infection. Journal of Clinical Microbiology, 49, 2490.  https://doi.org/10.1128/JCM.00450-11.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Weinstein, M. A., McCabe, J. P., & Cammisa, J. (2000). Postoperative spinal wound infection: A review of 2,391 consecutive index procedures. Journal of Spinal Disorders, 13, 422.  https://doi.org/10.1097/00002517-200010000-00009.CrossRefPubMedGoogle Scholar
  65. 65.
    Hahn, F., Zbinden, R., & Min, K. (2005). Late implant infections caused by Propionibacterium acnes in scoliosis surgery. European Spine Journal, 14, 783.  https://doi.org/10.1007/s00586-004-0854-6.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Wimmer, C., Gluch, H., Franzreb, M., & Ogon, M. (1998). Predisposing factors for infection in spine surgery: a survey of 850 spinal procedures. Journal of Spinal Disorders, 11, 124–128.PubMedGoogle Scholar
  67. 67.
    Pulido, L., Ghanem, E., Joshi, A., Purtill, J. J., & Parvizi, J. (2008). Periprosthetic joint infection: The incidence, timing, and predisposing factors. Clinical Orthopaedics and Related Research, 466, 1710–1715.  https://doi.org/10.1007/s11999-008-0209-4.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Durack, D. T. (1975). Experimental bacterial endocarditis. IV. Structure and evolution of very early lesions. The Journal of Pathology, 115, 81–89.  https://doi.org/10.1002/path.1711150204.CrossRefPubMedGoogle Scholar
  69. 69.
    Durack, D. T., & Beeson, P. B. (1972). Experimental bacterial endocarditis. II. Survival of a bacteria in endocardial vegetations. British Journal of Experimental Pathology, 53, 50–53.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Davies, D. G., & Geesey, G. G. (1995). Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Applied and Environmental Microbiology, 61, 860–867. doi:7793920.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15, 167–193.  https://doi.org/10.1128/CMR.15.2.167-193.2002.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Bernthal, N. M., Stavrakis, A. I., Billi, F., Cho, J. S., Kremen, T. J., Simon, S. I., et al. (2010). A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS One, 5, 1–11.  https://doi.org/10.1371/journal.pone.0012580.CrossRefGoogle Scholar
  73. 73.
    Thakkar, V., Ghobrial, G. M., Maulucci, C. M., Singhal, S., Prasad, S. K., Harrop, J. S., et al. (2014). Nasal MRSA colonization: Impact on surgical site infection following spine surgery. Clinical Neurology and Neurosurgery, 125, 94.  https://doi.org/10.1016/j.clineuro.2014.07.018.CrossRefPubMedGoogle Scholar
  74. 74.
    Kim, D. H., Spencer, M., Davidson, S. M., Li, L., Shaw, J. D., Gulczynski, D., et al. (2010). Institutional Prescreening for detection and eradication of methicillin-resistant Staphylococcus aureus in patients undergoing elective orthopaedic surgery. The Journal of Bone and Joint Surgery. American Volume, 92, 1820.CrossRefGoogle Scholar
  75. 75.
    Gruskay, J., Kepler, C., Smith, J., Radcliff, K., & Vaccaro, A. (2012). Is surgical case order associated with increased infection rate after spine surgery? Spine (Phila Pa 1976), 37, 1170.  https://doi.org/10.1097/BRS.0b013e3182407859.CrossRefGoogle Scholar
  76. 76.
    Gruskay, J., Smith, J., Kepler, C. K., Radcliff, K., Harrop, J., Albert, T., et al. (2013). The seasonality of postoperative infection in spine surgery. Journal of Neurosurgery. Spine, 18, 57.  https://doi.org/10.3171/2012.10.SPINE12572.CrossRefPubMedGoogle Scholar
  77. 77.
    Bible, J. E., O’Neill, K. R., Crosby, C. G., Schoenecker, J. G., McGirt, M. J., & Devin, C. J. (2013). Implant contamination during spine surgery. The Spine Journal, 13, 637.  https://doi.org/10.1016/j.spinee.2012.11.053.CrossRefPubMedGoogle Scholar
  78. 78.
    Mehta, A. I., Babu, R., Karikari, I. O., Grunch, B., Agarwal, V. J., Owens, T. R., et al. (2012). 2012 young investigator award winner: The distribution of body mass as a significant risk factor for lumbar spinal fusion postoperative infections. Spine (Phila Pa 1976), 37, 1652.  https://doi.org/10.1097/BRS.0b013e318241b186.CrossRefGoogle Scholar
  79. 79.
    Jackson, K. L., & Devine, J. G. (2016). The effects of obesity on spine surgery: A systematic review of the literature. Global Spine Journal, 6, 394.  https://doi.org/10.1055/s-0035-1570750.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Jain, D., Berven, S. H., Carter, J., Zhang, A. L., & Deviren, V. (2018). Bariatric surgery before elective posterior lumbar fusion is associated with reduced medical complications and infection. The Spine Journal, 18, 1526.  https://doi.org/10.1016/j.spinee.2018.01.023.CrossRefPubMedGoogle Scholar
  81. 81.
    Golinvaux, N. S., Varthi, A. G., Bohl, D. D., Basques, B. A., & Grauer, J. N. (2014). Complication rates following elective lumbar fusion in patients with diabetes. Spine (Phila Pa 1976), 39, 1809–1816.  https://doi.org/10.1097/BRS.0000000000000506.CrossRefGoogle Scholar
  82. 82.
    Hikata, T., Iwanami, A., Hosogane, N., Watanabe, K., Ishii, K., Nakamura, M., et al. (2014). High preoperative hemoglobin A1c is a risk factor for surgical site infection after posterior thoracic and lumbar spinal instrumentation surgery. Journal of Orthopaedic Science, 19, 223.  https://doi.org/10.1007/s00776-013-0518-7.CrossRefPubMedGoogle Scholar
  83. 83.
    Yang, S., Werner, B. C., Cancienne, J. M., Hassanzadeh, H., Shimer, A. L., Shen, F. H., et al. (2016). Preoperative epidural injections are associated with increased risk of infection after single-level lumbar decompression. The Spine Journal, 16, 191.  https://doi.org/10.1016/j.spinee.2015.07.439.CrossRefPubMedGoogle Scholar
  84. 84.
    Cancienne, J. M., Werner, B. C., Puvanesarajah, V., Hassanzadeh, H., Singla, A., Shen, F. H., et al. (2017). Does the timing of preoperative epidural steroid injection affect infection risk after ACDF or posterior cervical fusion? Spine (Phila Pa 1976), 42, 71–77.  https://doi.org/10.1097/BRS.0000000000001661.CrossRefGoogle Scholar
  85. 85.
    Sidhwa, F., & Itani, K. M. F. (2015). Skin preparation before surgery: Options and evidence. Surgical Infections, 16, 14.  https://doi.org/10.1089/sur.2015.010.CrossRefPubMedGoogle Scholar
  86. 86.
    Savage, J. W., Weatherford, B. M., Sugrue, P. A., Nolden, M. T., Liu, J. C., Song, J. K., et al. (2012). Efficacy of surgical preparation solutions in lumbar spine surgery. The Journal of Bone and Joint Surgery. American Volume, 94, 490.  https://doi.org/10.2106/JBJS.K.00471.CrossRefPubMedGoogle Scholar
  87. 87.
    Berríos-Torres, S. I., Umscheid, C. A., Bratzler, D. W., Leas, B., Stone, E. C., Kelz, R. R., et al. (2017). Centers for Disease Control and Prevention guideline for the prevention of surgical site infection, 2017. JAMA Surgery, 152, 784.  https://doi.org/10.1001/jamasurg.2017.0904.CrossRefPubMedGoogle Scholar
  88. 88.
    Barker, F. G. (2002). Efficacy of prophylactic antibiotic therapy in spinal surgery: a meta-analysis. Neurosurgery, 51, 391.  https://doi.org/10.1227/00006123-200208000-00017.CrossRefPubMedGoogle Scholar
  89. 89.
    Bratzler, D. W., Dellinger, E. P., Olsen, K. M., Perl, T. M., Auwaerter, P. G., Bolon, M. K., et al. (2013). Clinical practice guidelines for antimicrobial prophylaxis in surgery. American Journal of Health-System Pharmacy, 70, 195.  https://doi.org/10.2146/ajhp120568.CrossRefPubMedGoogle Scholar
  90. 90.
    Anderson, D. J., Podgorny, K., Berríos-Torres, S. I., Bratzler, D. W., Dellinger, E. P., Greene, L., et al. (2014). Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infection Control and Hospital Epidemiology, 35, 605.  https://doi.org/10.1086/676022.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Bull, A. L., Worth, L. J., & Richards, M. J. (2012). Impact of vancomycin surgical antibiotic prophylaxis on the development of methicillin-sensitive staphylococcus aureus surgical site infections: Report from Australian surveillance data (VICNISS). Annals of Surgery, 256, 1089.  https://doi.org/10.1097/SLA.0b013e31825fa398.CrossRefPubMedGoogle Scholar
  92. 92.
    Finkelstein, R., Rabino, G., Mashiah, T., Bar-El, Y., Adler, Z., Kertzman, V., et al. (2002). Vancomycin versus cefazolin prophylaxis for cardiac surgery in the setting of a high prevalence of methicillin-resistant staphylococcal infections. The Journal of Thoracic and Cardiovascular Surgery, 123, 326.  https://doi.org/10.1067/mtc.2002.119698.CrossRefPubMedGoogle Scholar
  93. 93.
    Reineke, S., Carrel, T. P., Eigenmann, V., Gahl, B., Fuehrer, U., Seidl, C., et al. (2018). Adding vancomycin to perioperative prophylaxis decreases deep sternal wound infections in high-risk cardiac surgery patients. European Journal of Cardio-Thoracic Surgery, 53, 428.  https://doi.org/10.1093/ejcts/ezx328.CrossRefPubMedGoogle Scholar
  94. 94.
    Tomov, M., Mitsunaga, L., Durbin-Johnson, B., Nallur, D., & Roberto, R. (2015). Reducing surgical site infection in spinal surgery with betadine irrigation and intrawound vancomycin powder. Spine (Phila Pa 1976), 40, 491–499.  https://doi.org/10.1097/BRS.0000000000000789.CrossRefGoogle Scholar
  95. 95.
    Brown, N. M., Cipriano, C. A., Moric, M., Sporer, S. M., & Della Valle, C. J. (2012). Dilute betadine lavage before closure for the prevention of acute postoperative deep periprosthetic joint infection. The Journal of Arthroplasty, 27, 27–30.  https://doi.org/10.1016/j.arth.2011.03.034.CrossRefPubMedGoogle Scholar
  96. 96.
    Rabenberg, V. S., Ingersoll, C. D., Sandrey, M. A., & Johnson, M. T. (2002). The bactericidal and cytotoxic effects of antimicrobial wound cleansers. Journal of Athletic Training, 37, 51–54.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Liu, J. X., Werner, J., Kirsch, T., Zuckerman, J. D., & Virk, M. S. (2018). Cytotoxicity evaluation of chlorhexidine gluconate on human fibroblasts, myoblasts, and osteoblasts. Journal of Bone and Joint Infection, 3, 165–172.  https://doi.org/10.7150/jbji.26355.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Balin, A. K., & Pratt, L. (2002). Dilute povidone-iodine solutions inhibit human skin fibroblast growth. Dermatologic Surgery, 28, 210–214.PubMedGoogle Scholar
  99. 99.
    Sweet, F. A., Roh, M., & Sliva, C. (2011). Intrawound application of vancomycin for prophylaxis in instrumented thoracolumbar fusions: Efficacy, drug levels, and patient outcomes. Spine (Phila Pa 1976), 36, 2084.  https://doi.org/10.1097/BRS.0b013e3181ff2cb1.CrossRefGoogle Scholar
  100. 100.
    Strom, R. G., Pacione, D., Kalhorn, S. P., & Frempong-Boadu, A. K. (2013). Lumbar laminectomy and fusion with routine local application of vancomycin powder: Decreased infection rate in instrumented and non-instrumented cases. Clinical Neurology and Neurosurgery, 115, 1766.  https://doi.org/10.1016/j.clineuro.2013.04.005.CrossRefPubMedGoogle Scholar
  101. 101.
    O’Neill, K. R., Smith, J. G., Abtahi, A. M., Archer, K. R., Spengler, D. M., McGirt, M. J., et al. (2011). Reduced surgical site infections in patients undergoing posterior spinal stabilization of traumatic injuries using vancomycin powder. The Spine Journal, 11, 641.  https://doi.org/10.1016/j.spinee.2011.04.025.CrossRefPubMedGoogle Scholar
  102. 102.
    Zebala, L. P., Chuntarapas, T., Kelly, M. P., Talcott, M., Greco, S., & Riew, K. D. (2014). Intrawound vancomycin powder eradicates surgical wound contamination: An in vivo rabbit study. The Journal of Bone and Joint Surgery. American Volume, 96, 46.  https://doi.org/10.2106/JBJS.L.01257.CrossRefPubMedGoogle Scholar
  103. 103.
    Godil, S. S., Parker, S. L., O’Neill, K. R., Devin, C. J., & McGirt, M. J. (2013). Comparative effectiveness and cost-benefit analysis of local application of vancomycin powder in posterior spinal fusion for spine trauma: clinical article. Journal of Neurosurgery. Spine, 19, 331.  https://doi.org/10.3171/2013.6.SPINE121105.CrossRefPubMedGoogle Scholar
  104. 104.
    Gans, I., Dormans, J. P., Spiegel, D. A., Flynn, J. M., Sankar, W. N., Campbell, R. M., et al. (2013). Adjunctive vancomycin powder in pediatric spine surgery is safe. Spine (Phila Pa 1976), 38, 1703.  https://doi.org/10.1097/BRS.0b013e31829e05d3.CrossRefGoogle Scholar
  105. 105.
    Mendoza, M. C., Sonn, K. A., Kannan, A. S., Bellary, S. S., Mitchell, S. M., Singh, G., et al. (2016). The effect of vancomycin powder on bone healing in a rat spinal rhBMP-2 model. Journal of Neurosurgery. Spine, 25, 147–153.  https://doi.org/10.3171/2015.11.SPINE15536.CrossRefPubMedGoogle Scholar
  106. 106.
    Laratta, J. L., Shillingford, J. N., Hardy, N., Lombardi, J. M., Saifi, C., Romanov, A., et al. (2017). Intrawound tobramycin powder eradicates surgical wound contamination. Spine (Phila Pa 1976), 42, E1393.  https://doi.org/10.1097/BRS.0000000000002187.CrossRefGoogle Scholar
  107. 107.
    Han, J.-S., Kim, S.-H., Jin, S.-W., Lee, S.-H., Kim, B.-J., Kim, S.-D., et al. (2016). The use of gentamicin-impregnated collagen sponge for reducing surgical site infection after spine surgery. Korean J Spine, 13, 129–133.  https://doi.org/10.14245/kjs.2016.13.3.129.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Scott, C. P., Higham, P. A., & Dumbleton, J. H. (1999). Effectiveness of bone cement containing tobramycin. An in vitro susceptibility study of 99 organisms found in infected joint arthroplasty. Journal of Bone and Joint Surgery. British Volume (London), 81, 440–443.CrossRefGoogle Scholar
  109. 109.
    Scott, C. P., & Higham, P. A. (2003). Antibiotic bone cement for the treatment of pseudomonas aeruginosa in joint arthroplasty: Comparison of tobramycin and gentamicin-loaded cements. Journal of Biomedical Materials Research, 64B, 94–98.  https://doi.org/10.1002/jbm.b.10515.CrossRefGoogle Scholar
  110. 110.
    Emohare, O., Ledonio, C. G., Hill, B. W., Davis, R. A., Polly, D. W., & Kang, M. M. (2014). Cost savings analysis of intrawound vancomycin powder in posterior spinal surgery. The Spine Journal, 14, 2710.  https://doi.org/10.1016/j.spinee.2014.03.011.CrossRefPubMedGoogle Scholar
  111. 111.
    Youssef, J. A., Orndorff, D. G., Scott, M. A., Ebner, R. E., & Knewitz, A. P. (2014). Sterile Seroma resulting from multilevel XLIF procedure as possible adverse effect of prophylactic vancomycin powder: A case report. Evidence Based Spine Care Journal, 5, 127–133.  https://doi.org/10.1055/s-0034-1386754.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Mariappan, R., Manninen, P., Massicotte, E. M., & Bhatia, A. (2013). Circulatory collapse after topical application of vancomycin powder during spine surgery. Journal of Neurosurgery. Spine, 19, 381–383.  https://doi.org/10.3171/2013.6.SPINE1311.CrossRefPubMedGoogle Scholar
  113. 113.
    Armaghani, S. J., Menge, T. J., Lovejoy, S. A., Mencio, G. A., & Martus, J. E. (2014). Safety of topical vancomycin for pediatric spinal deformity. Spine (Phila Pa 1976), 39, 1683–1687.  https://doi.org/10.1097/BRS.0000000000000465.CrossRefGoogle Scholar
  114. 114.
    Webster, J., & Alghamdi, A. (2015). Use of plastic adhesive drapes during surgery for preventing surgical site infection. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD006353.pub4.
  115. 115.
    Brown, M. D., & Brookfield, K. F. W. (2004). A randomized study of closed wound suction drainage for extensive lumbar spine surgery. Spine (Phila Pa 1976), 29, 1066.  https://doi.org/10.1097/00007632-200405150-00003.CrossRefGoogle Scholar
  116. 116.
    Diab, M., Smucny, M., Dormans, J. P., Erickson, M. A., Ibrahim, K., Lenke, L. G., et al. (2012). Use and outcomes of wound drain in spinal fusion for adolescent idiopathic scoliosis. Spine (Phila Pa 1976), 37, 966.  https://doi.org/10.1097/BRS.0b013e31823bbf0b.CrossRefGoogle Scholar
  117. 117.
    Kato, S., Chikuda, H., Ohya, J., Oichi, T., Matsui, H., Fushimi, K., et al. (2016). Risk of infectious complications associated with blood transfusion in elective spinal surgery—a propensity score matched analysis. The Spine Journal, 16, 55–60.  https://doi.org/10.1016/j.spinee.2015.10.014.CrossRefPubMedGoogle Scholar
  118. 118.
    Fisahn, C., Jeyamohan, S., Norvell, D. C., Tubbs, R. S., Moisi, M., Chapman, J. R., et al. (2017). Association between allogeneic blood transfusion and postoperative infection in major spine surgery. Clin Spine Surg, 30, E988–E992.  https://doi.org/10.1097/BSD.0000000000000539.CrossRefPubMedGoogle Scholar
  119. 119.
    Shiono, Y., Watanabe, K., Hosogane, N., Tsuji, T., Ishii, K., Nakamura, M., et al. (2012). Sterility of posterior elements of the spine in posterior correction surgery. Spine (Phila Pa 1976), 37, 523.  https://doi.org/10.1097/BRS.0b013e318224d7b2.CrossRefGoogle Scholar
  120. 120.
    Rehman, A., Rehman, A. U., Rehman, T. U., & Freeman, C. (2015). Removing outer gloves as a method to reduce spinal surgery infection. Journal of Spinal Disorders & Techniques, 28, E343.  https://doi.org/10.1097/BSD.0b013e31829046ca.CrossRefGoogle Scholar
  121. 121.
    Beldi, G., Bisch-Knaden, S., Banz, V., Mühlemann, K., & Candinas, D. (2009). Impact of intraoperative behavior on surgical site infections. American Journal of Surgery, 198, 157.  https://doi.org/10.1016/j.amjsurg.2008.09.023.CrossRefPubMedGoogle Scholar
  122. 122.
    Mangram, A. J., Horan, T. C., Pearson, M. L., Silver, L. C., & Jarvis, W. R. (1999). Guideline for prevention of surgical site infection, 1999. American Journal of Infection Control, 27, 97.  https://doi.org/10.1016/S0196-6553(99)70088-X.CrossRefPubMedGoogle Scholar
  123. 123.
    Arnold, W. V., Shirtliff, M. E., & Stoodley, P. (2014). Bacterial biofilms and periprosthetic infections. Instructional Course Lectures, 63, 385–391.  https://doi.org/10.1016/S0021-9355(13)73979-1.CrossRefPubMedGoogle Scholar
  124. 124.
    Lewis, K. (2010). Persister Cells. Annual Review of Microbiology, 64, 357–372.  https://doi.org/10.1146/annurev.micro.112408.134306.CrossRefPubMedGoogle Scholar
  125. 125.
    Endara, M., & Attinger, C. (2012). Using color to guide debridement. Advances in Skin & Wound Care, 25, 549–555.  https://doi.org/10.1097/01.ASW.0000425936.94874.9a.CrossRefGoogle Scholar
  126. 126.
    Dorafshar, A. H., Gitman, M., Henry, G., Agarwal, S., & Gottlieb, L. J. (2010). Guided surgical debridement: Staining tissues with methylene blue. Journal of Burn Care & Research, 31, 791–794.  https://doi.org/10.1097/BCR.0b013e3181eed1d6.CrossRefGoogle Scholar
  127. 127.
    Dipaola, C. P., Saravanja, D. D., Boriani, L., Zhang, H., Boyd, M. C., Kwon, B. K., et al. (2012). Postoperative infection treatment score for the spine (PITSS): Construction and validation of a predictive model to define need for single versus multiple irrigation and debridement for spinal surgical site infection. The Spine Journal, 12, 218.  https://doi.org/10.1016/j.spinee.2012.02.004.CrossRefPubMedGoogle Scholar
  128. 128.
    Fehring, T. K., Odum, S. M., Berend, K. R., Jiranek, W. A., Parvizi, J., Bozic, K. J., et al. (2013). Failure of irrigation and débridement for early postoperative periprosthetic infection knee. Clinical Orthopaedics and Related Research, 471, 250–257.  https://doi.org/10.1007/s11999-012-2373-9.CrossRefPubMedGoogle Scholar
  129. 129.
    Sherrell, J. C., Fehring, T. K., Odum, S., Hansen, E., Zmistowski, B., Dennos, A., et al. (2011). The chitranjan ranawat award: Fate of two-stage reimplantation after failed irrigation and débridement for periprosthetic knee infection. Clinical Orthopaedics and Related Research, 469, 18–25.  https://doi.org/10.1007/s11999-010-1434-1.CrossRefPubMedGoogle Scholar
  130. 130.
    Shaw, J. D., Miller, S., Plourde, A., Shaw, D. L., Wustrack, R., & Hansen, E. N. (2017). Methylene blue-guided debridement as an intraoperative adjunct for the surgical treatment of periprosthetic joint infection. The Journal of Arthroplasty, 32, 3718.  https://doi.org/10.1016/j.arth.2017.07.019.CrossRefPubMedGoogle Scholar
  131. 131.
    Parry, J. A., Karau, M. J., Kakar, S., Hanssen, A. D., Patel, R., & Abdel, M. P. (2017). Disclosing agents for the intraoperative identification of biofilms on orthopedic implants. The Journal of Arthroplasty, 32, 2501.  https://doi.org/10.1016/j.arth.2017.03.010.CrossRefPubMedGoogle Scholar
  132. 132.
    Coulthwaite, L., & Verran, J. (2009). Evaluation of in vivo denture plaque assessment methods. British Dental Journal, 207:E12; discussion 282-283., E12.  https://doi.org/10.1038/sj.bdj.2009.854.CrossRefPubMedGoogle Scholar
  133. 133.
    Carter, K., Landini, G., Damien Walmsley, A., & Walmsley, A. D. (2004). Automated quantification of dental plaque accumulation using digital imaging. Journal of Dentistry, 32, 623–628.  https://doi.org/10.1016/j.jdent.2004.06.006.CrossRefPubMedGoogle Scholar
  134. 134.
    Hedequist, D., Haugen, A., Hresko, T., & Emans, J. (2009). Failure of attempted implant retention in spinal deformity delayed surgical site infections. Spine (Phila Pa 1976), 34, 60.  https://doi.org/10.1097/BRS.0b013e31818ed75e.CrossRefGoogle Scholar
  135. 135.
    Núñez-Pereira, S., Pellisé, F., Rodríguez-Pardo, D., Pigrau, C., Bagó, J., Villanueva, C., et al. (2013). Implant survival after deep infection of an instrumented spinal fusion. The Bone and Joint Journal, 95-B, 1121.  https://doi.org/10.1302/0301-620X.95B8.CrossRefPubMedGoogle Scholar
  136. 136.
    Rihn, J. A., Lee, J. Y., & Ward, W. T. (2008). Infection after the surgical treatment of adolescent idiopathic scoliosis: Evaluation of the diagnosis, treatment, and impact on clinical outcomes. Spine (Phila Pa 1976), 33, 289.  https://doi.org/10.1097/BRS.0b013e318162016e.CrossRefGoogle Scholar
  137. 137.
    Kasliwal, M. K., L a, T., & Traynelis, V. C. (2013). Infection with spinal instrumentation: Review of pathogenesis, diagnosis, prevention, and management. Surgical Neurology International, 4, 392.  https://doi.org/10.4103/2152-7806.120783.CrossRefGoogle Scholar
  138. 138.
    Alpert, H. W., Farley, F. A., Caird, M. S., Hensinger, R. N., Li, Y., & Vanderhave, K. L. (2014). Outcomes following removal of instrumentation after posterior spinal fusion. Journal of Pediatric Orthopedics, 34, 1.  https://doi.org/10.1097/BPO.0000000000000145.CrossRefGoogle Scholar
  139. 139.
    Kanayama, M., Hashimoto, T., Shigenobu, K., Oha, F., Iwata, A., & Tanaka, M. (2017). MRI-based decision making of implant removal in deep wound infection after instrumented lumbar fusion. Clinical Spine Surgery, 30, E99.  https://doi.org/10.1097/BSD.0b013e3182aa4c72.CrossRefPubMedGoogle Scholar
  140. 140.
    McPherson, E. J., Dipane, M. V., & Sherif, S. M. (2013). Dissolvable antibiotic beads in treatment of Periprosthetic joint infection and revision arthroplasty - the use of synthetic pure calcium Sulfate (Stimulan®) impregnated with vancomycin & tobramycin. Reconstructive Review, 3, 32–43.  https://doi.org/10.15438/rr.v3i1.27.CrossRefGoogle Scholar
  141. 141.
    Hegde, V. (2012). Management of postoperative spinal infections. World Journal of Orthopedics, 3, 182.  https://doi.org/10.5312/wjo.v3.i11.182.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Seligson, D., Mehta, S., Voos, K., Henry, S. L., & Johnson, J. R. (1992). The use of antibiotic-impregnated polymethylmethacrylate beads to prevent the evolution of localized infection. Journal of Orthopaedic Trauma, 6, 401–406.CrossRefGoogle Scholar
  143. 143.
    Masuda, S., Fujibayashi, S., Otsuki, B., Kimura, H., & Matsuda, S. (2017). Efficacy of target drug delivery and dead space reduction using antibiotic-loaded bone cement for the treatment of complex spinal infection. Clin Spine Surg, 30, E1246.  https://doi.org/10.1097/BSD.0000000000000567.CrossRefPubMedGoogle Scholar
  144. 144.
    Zhu, E. S., Thompson, G. R., Kreulen, C., & Giza, E. (2013). Amphotericin B-impregnated bone cement to treat refractory coccidioidal osteomyelitis. Antimicrobial Agents and Chemotherapy, 57, 6341.  https://doi.org/10.1128/AAC.00963-13.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Deelstra, J. J., Neut, D., & Jutte, P. C. (2013). Successful treatment of Candida Albicans-infected Total hip prosthesis with staged procedure using an antifungal-loaded cement spacer. The Journal of Arthroplasty, 28, 374.e5.  https://doi.org/10.1016/j.arth.2012.04.034.CrossRefGoogle Scholar
  146. 146.
    Walker, B., Koerner, J., Sankarayanaryanan, S., & Radcliff, K. (2014). A consensus statement regarding the utilization of BMP in spine surgery. Current Reviews in Musculoskeletal Medicine, 7, 208.  https://doi.org/10.1007/s12178-014-9224-0.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    O’Shaughnessy, B. A., Kuklo, T. R., & Ondra, S. L. (2008). Surgical treatment of vertebral osteomyelitis with recombinant human bone morphogenetic protein-2. Spine (Phila Pa 1976), 33, E132.  https://doi.org/10.1097/BRS.0b013e3181657ee3.CrossRefGoogle Scholar
  148. 148.
    Allen, R. T., Lee, Y. P., Stimson, E., & Garfin, S. R. (2007). Bone morphogenetic protein-2 (BMP-2) in the treatment of pyogenic vertebral osteomyelitis. Spine (Phila Pa 1976), 32, 2996.  https://doi.org/10.1097/BRS.0b013e31815cde3e.CrossRefGoogle Scholar
  149. 149.
    Ploumis, A., Mehbod, A. A., Dressel, T. D., Dykes, D. C., Transfeldt, E. E., & Lonstein, J. E. (2008). Therapy of spinal wound infections using vacuum-assisted wound closure: Risk factors leading to resistance to treatment. Journal of Spinal Disorders & Techniques, 21, 320.  https://doi.org/10.1097/BSD.0b013e318141f99d.CrossRefGoogle Scholar
  150. 150.
    Lee, R., Beder, D., Street, J., Boyd, M., Fisher, C., Dvorak, M., et al. (2018). The use of vacuum-assisted closure in spinal wound infections with or without exposed dura. European Spine Journal, 27, 2536.  https://doi.org/10.1007/s00586-018-5612-2.CrossRefPubMedGoogle Scholar
  151. 151.
    Yuan-Innes, M. J., Temple, C. L., & Lacey, M. S. (2001). Vacuum-assisted wound closure: a new approach to spinal wounds with exposed hardware. Spine (Phila Pa 1976), 26, E1.CrossRefGoogle Scholar
  152. 152.
    Argenta, L. C., & Morykwas, M. J. (1997). Vacuum-assisted closure: a new method for wound control and treatment: Clinical experience. Annals of Plastic Surgery, 38, 563.CrossRefGoogle Scholar
  153. 153.
    Dumanian, G. A., Ondra, S. L., Liu, J., Schafer, M. F., & Chao, J. D. (2003). Muscle flap salvage of spine wounds with soft tissue defects or infection. Spine (Phila Pa 1976), 28, 1203.  https://doi.org/10.1097/01.BRS.0000067260.22943.48.CrossRefGoogle Scholar
  154. 154.
    Hochberg, J., Ardenghy, M., Yuen, J., Gonzalez-Cruz, R., Miura, Y., Conrado, R. M., et al. (1998). Muscle and musculocutaneous flap coverage of exposed spinal fusion devices. Plastic and Reconstructive Surgery, 102, 385.  https://doi.org/10.1097/00006534-199808000-00013.CrossRefPubMedGoogle Scholar
  155. 155.
    Mericli, A. F., Tarola, N. A., Moore, J. H., Copit, S. E., Fox, J. W., & Tuma, G. A. (2010). Paraspinous muscle flap reconstruction of complex midline back wounds: Risk factors and postreconstruction complications. Annals of Plastic Surgery, 65, 219.  https://doi.org/10.1097/SAP.0b013e3181c47ef4.CrossRefPubMedGoogle Scholar
  156. 156.
    Mericli, A. F., Mirzabeigi, M. N., Moore, J. H., Fox, J. W., Copit, S. E., & Tuma, G. A. (2011). Reconstruction of complex posterior cervical spine wounds using the paraspinous muscle flap. Plastic and Reconstructive Surgery, 128, 148.  https://doi.org/10.1097/PRS.0b013e3182174075.CrossRefPubMedGoogle Scholar
  157. 157.
    Marschall, J., Lane, M. A., Beekmann, S. E., Polgreen, P. M., & Babcock, H. M. (2013). Current management of prosthetic joint infections in adults: Results of an emerging infections network survey. International Journal of Antimicrobial Agents, 41, 272.  https://doi.org/10.1016/j.ijantimicag.2012.10.023.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Keller, S. C., Cosgrove, S. E., Higgins, Y., Piggott, D. A., Osgood, G., & Auwaerter, P. G. (2016). Role of suppressive oral antibiotics in orthopedic hardware infections for those not undergoing two-stage replacement surgery. Open Forum Infectious Diseases, 3, ofw176.  https://doi.org/10.1093/ofid/ofw176.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Kim, B. N., Kim, E. S., & Oh, M. D. (2014). Oral antibiotic treatment of staphylococcal bone and joint infections in adults. The Journal of Antimicrobial Chemotherapy, 69, 309–322.  https://doi.org/10.1093/jac/dkt374.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jeremy D. Shaw
    • 1
  1. 1.Department of Orthopaedic SurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations