We Begin to Target the Biofilm

  • Dustin L. WilliamsEmail author


Biofilms were unknowingly observed centuries ago. Within the last 70 years, our understanding of biofilms, their morphology, and characteristics has grown. Yet despite an increased understanding, the presence of biofilms and their impact on healthcare are still often overlooked, or misunderstood. Antimicrobial technologies and applications are primarily focused on planktonic bacteria. A targeted approach against the biofilm phenotype is likely to improve infection outcomes wherein biofilms are the source of difficult-to-treat infections.


Biofilm history Unexploited opportunity Target Biofilm phenotype Initial inocula Antibiofilm 



The opinions and information presented in this chapter are those of the author and do not necessarily reflect the position or policy of the Department of Veterans Affairs or the US Government.


  1. 1.
    ZoBell, C. E. (1943). The effect of solid surfaces upon bacterial activity. Journal of Bacteriology, 46, 39–56.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Costerton, J. W., Geesey, G. G., & Cheng, K. J. (1978). How bacteria stick. Scientific American, 238, 86–95.CrossRefGoogle Scholar
  3. 3.
    Hoiby, N. (2017). A short history of microbial biofilms and biofilm infections. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica, 125, 272–275. Scholar
  4. 4.
    Donlan, R. M., & Costerton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15, 167–193.CrossRefGoogle Scholar
  5. 5.
    Marrie, T., Nelligan, J., & Costerton, J. (1982). A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation, 66, 1339–1341.CrossRefGoogle Scholar
  6. 6.
    Gristina, A. G., & Costerton, J. W. (1984). Bacteria-laden biofilms: A hazard to orthopedic prostheses. Infections in Surgery, 3, 655–662.Google Scholar
  7. 7.
    Nickel, J. C., Ruseska, I., Wright, J. B., & Costerton, J. W. (1985). Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrobial Agents and Chemotherapy, 27, 619–624.CrossRefGoogle Scholar
  8. 8.
    Nichols, W. W., Dorrington, S. M., Slack, M. P. E., & Walmsley, H. L. (1988). Inhibition of tobramycin diffusion by binding to alginate. Antimicrobial Agents and Chemotherapy, 32, 518–523.CrossRefGoogle Scholar
  9. 9.
    Lawrence, J. R., Korber, D. R., Hoyle, B. D., Costerton, J. W., & Caldwell, D. E. (1991). Optical sectioning of microbial biofilms. Journal of Bacteriology, 173, 6558–6567.CrossRefGoogle Scholar
  10. 10.
    Borriello, G., et al. (2004). Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrobial Agents and Chemotherapy, 48, 2659–2664.CrossRefGoogle Scholar
  11. 11.
    Brandwein, M., Steinberg, D., & Meshner, S. (2016). Microbial biofilms and the human skin microbiome. NPJ Biofilms and Microbiomes, 2, 3. Scholar
  12. 12.
    Grice, E. A., et al. (2008). A diversity profile of the human skin microbiota. Genome Research, 18, 1043–1050. Scholar
  13. 13.
    Clark, J. J. C., Abildgaard, J. T., Backes, J., & Hawkins, R. J. (2018). Preventing infection in shoulder surgery. Journal of Shoulder and Elbow Surgery, 27, 1333–1341. Scholar
  14. 14.
    Atesok, K., et al. (2017). Postoperative deep shoulder infections following rotator cuff repair. World Journal of Orthopedics, 8, 612–618. Scholar
  15. 15.
    Kadler, B. K., Mehta, S. S., & Funk, L. (2015). Propionibacterium acnes infection after shoulder surgery. International Journal of Shoulder Surgery, 9, 139–144. Scholar
  16. 16.
    Fink, B., & Sevelda, F. (2017). Periprosthetic joint infection of shoulder arthroplasties: Diagnostic and treatment options. BioMed Research International, 2017, 4582756. Scholar
  17. 17.
    Nelson, G. N., Davis, D. E., & Namdari, S. (2016). Outcomes in the treatment of periprosthetic joint infection after shoulder arthroplasty: A systematic review. Journal of Shoulder and Elbow Surgery, 25, 1337–1345. Scholar
  18. 18.
    Georgy, M., Stern, M., & Murphy, K. (2017). What is the role of the bacterium Propionibacterium acnes in type 1 Modic changes? A review of the literature. Canadian Association of Radiologists journal = Journal l’Association canadienne des radiologistes, 68, 419–424. Scholar
  19. 19.
    Ganko, R., Rao, P. J., Phan, K., & Mobbs, R. J. (2015). Can bacterial infection by low virulent organisms be a plausible cause for symptomatic disc degeneration? A systematic review. Spine, 40, E587–E592. Scholar
  20. 20.
    Uckay, I., et al. (2010). Spondylodiscitis due to Propionibacterium acnes: Report of twenty-nine cases and a review of the literature. Clinical Microbiology and Infection, 16, 353–358. Scholar
  21. 21.
    Lister, J. (1867). On a new method of treating compound fracture, Abscess, &c., with observations on the conditions of suppuration. Lancet, 336–339.Google Scholar
  22. 22.
    Worboys, M. J. (2013). Lister and the performance of antiseptic surgery. Notes and Records of the Royal Society of London, 67, 199–209. Scholar
  23. 23.
    Edmiston, C. E., Jr., et al. (2013). Reducing the risk of surgical site infections: Does chlorhexidine gluconate provide a risk reduction benefit? American Journal of Infection Control, 41, S49–S55. Scholar
  24. 24.
    Oduwole, K. O., et al. (2010). Anti-biofilm activity of sub-inhibitory povidone-iodine concentrations against Staphylococcus epidermidis and Staphylococcus aureus. Journal of Orthopaedic Research, 28, 1252–1256. Scholar
  25. 25.
    Karpanen, T. J., et al. (2008). Penetration of chlorhexidine into human skin. Antimicrobial Agents and Chemotherapy, 52, 3633–3636. Scholar
  26. 26.
    Okuda, K. I., et al. (2018). The composition and structure of biofilms developed by Propionibacterium acnes isolated from cardiac pacemaker devices. Frontiers in Microbiology, 9, 182. Scholar
  27. 27.
    Oliveira, W. F., et al. (2018). Staphylococcus aureus and Staphylococcus epidermidis infections on implants. The Journal of Hospital Infection, 98, 111–117. Scholar
  28. 28.
    Montanaro, L., et al. (2011). Scenery of Staphylococcus implant infections in orthopedics. Future Microbiology, 6, 1329–1349. Scholar
  29. 29.
    Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G., Jr. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28, 603–661. Scholar
  30. 30.
    Achermann, Y., Goldstein, E. J., Coenye, T., & Shirtliff, M. E. (2014). Propionibacterium acnes: From commensal to opportunistic biofilm-associated implant pathogen. Clinical Microbiology Reviews, 27, 419–440. Scholar
  31. 31.
    Johnston, D. H., Fairclough, J. A., Brown, E. M., & Morris, R. (1987). Rate of bacterial recolonization of the skin after preparation: Four methods compared. The British Journal of Surgery, 74, 64.CrossRefGoogle Scholar
  32. 32.
    Olson, R. J. (2012). Hypodermic needle system and method of use to reduce infection. USA patent.Google Scholar
  33. 33.
    Williams, D. L., & Costerton, J. W. (2011). Using biofilms as initial inocula in animal models of biofilm-related infections. Journal of Biomedical Materials Research, 100, 1163–1169.PubMedGoogle Scholar
  34. 34.
    Williams, D. L., et al. (2012). In vivo efficacy of a silicone – cationic steroid antimicrobial coating to prevent implant-related infection. Biomaterials, 33, 8641–8656.CrossRefGoogle Scholar
  35. 35.
    Williams, D. L., et al. (2012). Experimental model of biofilm implant-related osteomyelitis to test combination biomaterials using biofilms as initial inocula. Journal of Biomedical Materials Research Part A, 100, 1888–1900.CrossRefGoogle Scholar
  36. 36.
    Costerton, J. W. (2007). In J. W. Costerton (Ed.), The Biofilm Primer (pp. 5–13). Springer-Verlage Berlin Heidelberg.Google Scholar
  37. 37.
    Rasmussen, R. M., Epperson, R. T., Taylor, N. B., & Williams, D. L. (2019). Plume height and surface coverage analysis of methicillin-resistant Staphylococcus aureus isolates grown in a CDC biofilm reactor. Biofouling, 35(4), 463–471.CrossRefGoogle Scholar
  38. 38.
    Farha, M. A., & Brown, E. D. (2019). Drug repurposing for antimicrobial discovery. Nature Microbiology, 4, 565–577. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Veterans AffairsSalt Lake CityUSA
  2. 2.Department of OrthopaedicsUniversity of UtahSalt Lake CityUSA
  3. 3.Department of PathologyUniversity of UtahSalt Lake CityUSA
  4. 4.Department of BioengineeringUniversity of UtahSalt Lake CityUSA
  5. 5.Department of Physical Medicine and RehabilitationUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations