Sliding Mode Control Methodology in the Applications of Industrial Power Systems pp 185-205 | Cite as
Sliding Mode Control of Three-Phase Power Converters
Chapter
First Online:
Abstract
This chapter presents an ESO-based SOSM control for three-phase two-level grid-connected power converters. The presented control technique forces the input currents to track the desired values, which can indirectly regulate the output voltage while achieving a user-defined power factor.
References
- 1.Atassi, A.N., Khalil, H.K.: A separation principle for the stabilization of a class of nonlinear systems. IEEE Trans. Autom. Control 44(9), 1672–1687 (1999)MathSciNetCrossRefGoogle Scholar
- 2.Blasko, V., Kaura, V.: A new mathematical model and control of a three-phase AC–DC voltage source converter. IEEE Trans. Power Electron. 12(1), 116–123 (1997)CrossRefGoogle Scholar
- 3.Carrasco, J.M., Franquelo, L.G., Bialasiewicz, J.T., Galvan, E., Guisado, R.C.P., Prats, M.A.M., Leon, J.I., Moreno-Alfonso, N.: Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron. 53(4), 1002–1016 (2006)CrossRefGoogle Scholar
- 4.Chen, M.S., Chen, C.C.: Unknown input observer for linear non-minimum phase systems. J. Frankl. Inst. 347(2), 577–588 (2010)MathSciNetCrossRefGoogle Scholar
- 5.Escobar, G., Chevreau, D., Ortega, R., Mendes, E.: An adaptive passivity-based controller for a unity power factor rectifier. IEEE Trans. Control Syst. Technol. 9(4), 637–644 (2001)CrossRefGoogle Scholar
- 6.Escobar, G., Ortega, R., Van der Schaft, A.J.: A saturated output feedback controller for the three phase voltage sourced reversible boost type rectifier. In: Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (IECON), vol. 2, pp. 685–690 (1998)Google Scholar
- 7.Gao, W., Hung, J.C.: Variable structure control of nonlinear systems: a new approach. IEEE Trans. Ind. Electron. 40(1), 45–55 (1993)CrossRefGoogle Scholar
- 8.Gonzalez, T., Moreno, J.A., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Autom. Control 57(8), 2100–2105 (2012)MathSciNetCrossRefGoogle Scholar
- 9.Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)CrossRefGoogle Scholar
- 10.Harnefors, L., Yepes, A.G., Vidal, A., Doval-Gandoy, J.: Passivity-based controller design of grid-connected VSCs for prevention of electrical resonance instability. IEEE Trans. Ind. Electron. 62(2), 702–710 (2015)CrossRefGoogle Scholar
- 11.Houari, A., Renaudineau, H., Martin, J.P., Pierfederici, S., Meibody-Tabar, F.: Flatness-based control of three-phase inverter with output LC filter. IEEE Trans. Ind. Electron. 59(7), 2890–2897 (2012)CrossRefGoogle Scholar
- 12.Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)CrossRefGoogle Scholar
- 13.Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall (2001)Google Scholar
- 14.Koren, I., Krishna, C.M.: Fault-Tolerant Systems. Elsevier (2010)Google Scholar
- 15.Lee, D.C., Lee, G.M., Lee, K.D.: DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization. IEEE Trans. Ind. Appl. 36(3), 826–833 (2000)CrossRefGoogle Scholar
- 16.Lee, T.S.: Input-output linearization and zero-dynamics control of three-phase AC/DC voltage-source converters. IEEE Trans. Power Electron. 18(1), 11–22 (2003)CrossRefGoogle Scholar
- 17.Leon, J.I., Vazquez, S., Franquelo, L.G.: Multilevel converters: control and modulation techniques for their operation and industrial applications. Proc. IEEE 105(11), 2066–2081 (2017)CrossRefGoogle Scholar
- 18.Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)MathSciNetCrossRefGoogle Scholar
- 19.Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)MathSciNetCrossRefGoogle Scholar
- 20.Linares-Flores, J., Méndez, A.H., García-Rodríguez, C., Sira-Ramírez, H.: Robust nonlinear adaptive control of a boost converter via algebraic parameter identification. IEEE Trans. Ind. Electron. 61(8), 4105–4114 (2014)CrossRefGoogle Scholar
- 21.Liu, J., Laghrouche, S., Wack, M.: Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications. Int. J. Control 87(6), 1117–1130 (2014)MathSciNetCrossRefGoogle Scholar
- 22.Liu, J., Vazquez, S., Gao, H., Franquelo, L.G.: Robust control for three-phase grid connected power converters via second order sliding mode. In: IEEE International Conference on Industrial Technology (ICIT), pp. 1149–1154 (2015)Google Scholar
- 23.Luenberger, D.G.: Observing the state of a linear system. IEEE Trans. Mil. Electron. 8(2), 74–80 (1964)CrossRefGoogle Scholar
- 24.Pahlevaninezhad, M., Das, P., Drobnik, J., Jain, P.K., Bakhshai, A.: A new control approach based on the differential flatness theory for an AC/DC converter used in electric vehicles. IEEE Trans. Power Electron. 27(4), 2085–2103 (2012)CrossRefGoogle Scholar
- 25.Pan, C.T., Chen, T.C.: Modelling and analysis of a three phase PWM AC–DC convertor without current sensor. IEE Proc. B (Electric Power Appl.) 140(3), 201–208 (1993)CrossRefGoogle Scholar
- 26.Romero-Cadaval, E., Spagnuolo, G., Franquelo, L.G., Ramos-Paja, C.A., Suntio, T., Xiao, W.M.: Grid-connected photovoltaic generation plants: components and operation. IEEE Ind. Electron. Mag. 7(3), 6–20 (2013)CrossRefGoogle Scholar
- 27.Shtessel, Y., Baev, S., Biglari, H.: Unity power factor control in three-phase AC/DC boost converter using sliding modes. IEEE Trans. Ind. Electron. 55(11), 3874–3882 (2008)CrossRefGoogle Scholar
- 28.Sun, L., Li, D., Lee, K.Y.: Enhanced decentralized PI control for fluidized bed combustor via advanced disturbance observer. Control Eng. Pract. 42, 128–139 (2015)CrossRefGoogle Scholar
- 29.Sun, L., Li, D., Zhong, Q.C., Lee, K.Y.: Control of a class of industrial processes with time delay based on a modified uncertainty and disturbance estimator. IEEE Trans. Ind. Electron. 63(11), 7018–7028 (2016)CrossRefGoogle Scholar
- 30.Tan, S.C., Lai, Y.M., Tse, C.K., Martinez-Salamero, L., Wu, C.K.: A fast-response sliding-mode controller for boost-type converters with a wide range of operating conditions. IEEE Trans. Ind. Electron. 54(6), 3276–3286 (2007)CrossRefGoogle Scholar
- 31.Thounthong, P.: Control of a three-level boost converter based on a differential flatness approach for fuel cell vehicle applications. IEEE Trans. Veh. Technol. 61(3), 1467–1472 (2012)CrossRefGoogle Scholar
- 32.Umbria, F., Aracil, J., Gordillo, F., Salas, F., Sanchez, J.A.: Three-time-scale singular perturbation stability analysis of three-phase power converters. Asian J. Control 16(5), 1361–1372 (2014)CrossRefGoogle Scholar
- 33.Vazquez, S., Leon, J.I., Franquelo, L.G., Rodriguez, J., Young, H.A., Marquez, A., Zanchetta, P.: Model predictive control: a review of its applications in power electronics. IEEE Ind. Electron. Mag. 8(1), 16–31 (2014)CrossRefGoogle Scholar
- 34.Vazquez, S., Liu, J., Gao, H., Franquelo, L.G.: Second order sliding mode control for three-level NPC converters via extended state observer. In: 41st Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 005118–005123 (2015)Google Scholar
- 35.Vazquez, S., Marquez, A., Aguilera, R., Quevedo, D., Leon, J.I., Franquelo, L.G.: Predictive optimal switching sequence direct power control for grid-connected power converters. IEEE Trans. Ind. Electron. 62(4), 2010–2020 (2015)CrossRefGoogle Scholar
- 36.Vazquez, S., Sanchez, J.A., Reyes, M.R., Leon, J.I., Carrasco, J.M.: Adaptive vectorial filter for grid synchronization of power converters under unbalanced and/or distorted grid conditions. IEEE Trans. Ind. Electron. 61(3), 1355–1367 (2014)CrossRefGoogle Scholar
- 37.Wang, G., Konstantinou, G., Townsend, C.D., Pou, J., Vazquez, S., Demetriades, G.D., Agelidis, V.G.: A review of power electronics for grid connection of utility-scale battery energy storage systems. IEEE Trans. Sustain. Energy 7(4), 1778–1790 (2016)CrossRefGoogle Scholar
- 38.Wu, R., Dewan, S.B., Slemon, G.R.: A PWM AC-to-DC converter with fixed switching frequency. IEEE Trans. Ind. Appl. 26(5), 880–885 (1990)CrossRefGoogle Scholar
Copyright information
© Springer Nature Switzerland AG 2020