Sliding-Mode-Observer-Based Fault Diagnosis of PEMFC Systems

  • Jianxing LiuEmail author
  • Yabin Gao
  • Yunfei Yin
  • Jiahui Wang
  • Wensheng Luo
  • Guanghui Sun
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 249)


This chapter presents a fault diagnosis method for PEMFC systems taking into account a fault scenario of sudden air leak in the air supply manifold. Based on the control-oriented model proposed in the literature, an adaptive-gain SOSM observer is developed for observing the system states, where the adaptive law estimates the uncertain parameters.


  1. 1.
    Alwi, H., Edwards, C.: Fault detection and fault-tolerant control of a civil aircraft using a sliding-mode-based scheme. IEEE Trans. Control Syst. Technol. 16(3), 499–510 (2008)CrossRefGoogle Scholar
  2. 2.
    Arcak, M., Görgün, H., Pedersen, L.M., Varigonda, S.: A nonlinear observer design for fuel cell hydrogen estimation. IEEE Trans. Control Syst. Technol. 12(1), 101–110 (2004)CrossRefGoogle Scholar
  3. 3.
    Besançon, G.: High-gain observation with disturbance attenuation and application to robust fault detection. Automatica 39(6), 1095–1102 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Carrette, L., Friedrich, K., Stimming, U.: Fuel cells-fundamentals and applications. Fuel Cells 1(1), 5–39 (2001)CrossRefGoogle Scholar
  5. 5.
    Chen, J., Patton, R., Zhang, H.: Design of unknown input observers and robust fault detection filters. Int. J. Control 63(1), 85–105 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dotelli, G., Ferrero, R., Stampino, P.G., Latorrata, S., Toscani, S.: Diagnosis of pem fuel cell drying and flooding based on power converter ripple. IEEE Trans. Instrum. Meas. 63(10), 2341–2348 (2014)CrossRefGoogle Scholar
  7. 7.
    Edwards, C., Spurgeon, S., Patton, R.: Sliding mode observers for fault detection and isolation. Automatica 36(4), 541–553 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Edwards, C., Tan, C.P.: Sensor fault tolerant control using sliding mode observers. Control Eng. Pract. 14(8), 897–908 (2006)CrossRefGoogle Scholar
  9. 9.
    Escobet, T., Feroldi, D., Lira, S.D., Puig, V., Quevedo, J., Riera, J., Serra, M.: Model-based fault diagnosis in pem fuel cell systems. J. Power Sources 192(1), 216–223 (2009)CrossRefGoogle Scholar
  10. 10.
    Forrai, A., Funato, H., Yanagita, Y., Kato, Y.: Fuel-cell parameter estimation and diagnostics. IEEE Trans. Energy Convers. 20(3), 668–675 (2005)CrossRefGoogle Scholar
  11. 11.
    Frank, P., Ding, X.: Survey of robust residual generation and evaluation methods in observer-based fault detection systems. J. Process Control 7(6), 403–424 (1997)CrossRefGoogle Scholar
  12. 12.
    Fridman, L., Shtessel, Y., Edwards, C., Yan, X.G.: Higher-order sliding-mode observer for state estimation and input reconstruction in nonlinear systems. Int. J. Robust Nonlinear Control 18(4–5), 399–412 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Görgün, H., Arcak, M., Barbir, F.: An algorithm for estimation of membrane water content in PEM fuel cells. J. Power Sources 157(1), 389–394 (2006)CrossRefGoogle Scholar
  14. 14.
    Hammouri, H., Kinnaert, M., El Yaagoubi, E.: Observer-based approach to fault detection and isolation for nonlinear systems. IEEE Trans. Autom. Control 44(10), 1879–1884 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hou, M., Muller, P.: Design of observers for linear systems with unknown inputs. IEEE Trans. Autom. Control 37(6), 871–875 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hou, M., Patton, R.: An LMI approach to \(H_-/H_\infty \) fault detection observers. In: UKACC International Conference on Control, UK, pp. 305–310 (1996)Google Scholar
  17. 17.
    Ingimundarson, A., Stefanopoulou, A., McKay, D.: Model-based detection of hydrogen leaks in a fuel cell stack. IEEE Trans. Control Syst. Technol. 16(5), 1004–1012 (2008)CrossRefGoogle Scholar
  18. 18.
    Jiang, B., Staroswiecki, M., Cocquempot, V.: Fault estimation in nonlinear uncertain systems using robust/sliding-mode observers. IEE Proc. Control Theory Appl. 151(1), 29–37 (2004)CrossRefGoogle Scholar
  19. 19.
    Kelouwani, S., Adegnon, K., Agbossou, K., Dube, Y.: Online system identification and adaptive control for PEM fuel cell maximum efficiency tracking. IEEE Trans. Energy Convers. 27(3), 580–592 (2012)CrossRefGoogle Scholar
  20. 20.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall (2001)Google Scholar
  21. 21.
    Kunusch, C., Puleston, P.F., Mayosky, M.A., Fridman, L.: Experimental results applying second order sliding mode control to a PEM fuel cell based system. Control Eng. Pract. 21(5), 719–726 (2013)CrossRefGoogle Scholar
  22. 22.
    Larminie, J., Dicks, A., McDonald, M.S.: Fuel Cell Systems Explained, vol. 2. Wiley, Chichester (2003)CrossRefGoogle Scholar
  23. 23.
    Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Lira, S.D., Puig, V., Quevedo, J., Husar, A.: LPV observer design for PEM fuel cell system: application to fault detection. J. Power Sources 196(9), 4298–4305 (2011)CrossRefGoogle Scholar
  27. 27.
    Liu, J., Laghrouche, S., Harmouche, M., Wack, M.: Adaptive-gain second-order sliding mode observer design for switching power converters. Control Eng. Pract. 30, 124–131 (2014)CrossRefGoogle Scholar
  28. 28.
    Massoumnia, M.A., Verghese, G.C., Willsky, A.S.: Failure detection and identification. IEEE Trans. Autom. Control 34(3), 316–321 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Matraji, I., Laghrouche, S., Jemei, S., Wack, M.: Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode. Appl. Energy 104, 945–957 (2013)CrossRefGoogle Scholar
  30. 30.
    Moreno, J., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control (CDC), pp. 2856–2861. IEEE (2008)Google Scholar
  31. 31.
    Persis, C.D., Isidori, A.: A geometric approach to nonlinear fault detection and isolation. IEEE Trans. Autom. Control 46(6), 853–865 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Pukrushpan, J., Stefanopoulou, A., Peng, H.: Control of fuel cell breathing: initial results on the oxygen starvation problem. IEEE Control Syst. Mag. 24(2), 30–46 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Pukrushpan, J.T., Stefanopoulou, A.G., Peng, H.: Control of fuel cell power systems: principles, modeling, analysis and feedback design. Springer Science & Business Media (2004)Google Scholar
  34. 34.
    Qiu, Z., Gertler, J.: Robust FDI systems and \(H_\infty \)-optimization-disturbances and tall fault case. In: Proceedings of the 32nd IEEE Conference on Decision and Control, USA, pp. 1710–1715 (1993)Google Scholar
  35. 35.
    Rajamani, R.: Observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control 43(3), 397–401 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Rakhtala, S.M., Noei, A.R., Ghaderi, R., Usai, E.: Design of finite-time high-order sliding mode state observer: a practical insight to PEM fuel cell system. J. Process Control 24(1), 203–224 (2014)CrossRefGoogle Scholar
  37. 37.
    Ramos-Paja, C., Giral, R., Martinez-Salamero, L., Romano, J., Romero, A., Spagnuolo, G.: A PEM fuel-cell model featuring oxygen-excess-ratio estimation and power-electronics interaction. IEEE Trans. Ind. Electron. 57(6), 1914–1924 (2010)CrossRefGoogle Scholar
  38. 38.
    Romero-Cadaval, E., Spagnuolo, G., Franquelo, L.G., Ramos-Paja, C.A., Suntio, T., Xiao, W.M.: Grid-connected photovoltaic generation plants components and operation. IEEE Ind. Electron. Mag. 7(3), 6–20 (2013)Google Scholar
  39. 39.
    She, Y., Baran, M., She, X.: Multiobjective control of PEM fuel cell system with improved durability. IEEE Trans. Sustain. Energy 4(1), 127–135 (2013)CrossRefGoogle Scholar
  40. 40.
    Slotine, J.J.E., Li, W., et al.: Applied Nonlinear Control, vol. 199. Prentice Hall, New Jersey (1991)Google Scholar
  41. 41.
    Spurgeon, S.K.: Sliding mode observers: a survey. Int. J. Syst. Sci. 39(8), 751–764 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Suh, K.W., Stefanopoulou, A.G.: Performance limitations of air flow control in power-autonomous fuel cell systems. IEEE Trans. Control Syst. Technol. 15(3), 465–473 (2007)CrossRefGoogle Scholar
  43. 43.
    Talj, R.J., Hissel, D., Ortega, R., Becherif, M., Hilairet, M.: Experimental validation of a PEM fuel-cell reduced-order model and a moto-compressor higher order sliding-mode control. IEEE Trans. Ind. Electron. 57(6), 1906–1913 (2010)CrossRefGoogle Scholar
  44. 44.
    Tan, C., Edwards, C.: Sliding mode observers for detection and reconstruction of sensor faults. Automatica 38(10), 1815–1821 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Tan, C., Edwards, C.: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int. J. Robust Nonlinear Control 13(5), 443–463 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Vahidi, A., Stefanopoulou, A., Peng, H.: Current management in a hybrid fuel cell power system: a model-predictive control approach. IEEE Trans. Control Syst. Technol. 14(6), 1047–1057 (2006)CrossRefGoogle Scholar
  47. 47.
    Vazquez, S., Sanchez, J.A., Carrasco, J.M., Leon, J.I., Galvan, E.: A model-based direct power control for three-phase power converters. IEEE Trans. Ind. Electron. 55(4), 1647–1657 (2008)CrossRefGoogle Scholar
  48. 48.
    Veluvolu, K.C., Defoort, M., Soh, Y.C.: High-gain observer with sliding mode for nonlinear state estimation and fault reconstruction. J. Franklin Inst. 351(4), 1995–2014 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Wang, H., Huang, Z.J., Daley, S.: On the use of adaptive updating rules for actuator and sensor fault diagnosis. Automatica 33, 217–225 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Yan, X., Edwards, C.: Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica 43(9), 1605–1614 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Yan, X.G., Edwards, C.: Adaptive sliding-mode-observer-based fault reconstruction for nonlinear systems with parametric uncertainties. IEEE Trans. Ind. Electron. 55(11), 4029–4036 (2008)CrossRefGoogle Scholar
  52. 52.
    Yang, H., Saif, M.: Fault detection in a class of nonlinear systems via adaptive sliding observer. IEEE Int. Conf. Syst. Man Cybern. 3, 2199–2204 (1995)Google Scholar
  53. 53.
    Yang, H., Saif, M.: Nonlinear adaptive observer design for fault detection. In: Proceedings of the American Control Conference, USA, pp. 1136–1139 (1995)Google Scholar
  54. 54.
    Zhang, X., Polycarpou, M., Parisini, T.: Fault diagnosis of a class of nonlinear uncertain systems with lipschitz nonlinearities using adaptive estimation. Automatica 46(2), 290–299 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)CrossRefGoogle Scholar
  56. 56.
    Ziogou, C., Papadopoulou, S., Georgiadis, M.C., Voutetakis, S.: On-line nonlinear model predictive control of a PEM fuel cell system. J. Process Control 23(4), 483–492 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jianxing Liu
    • 1
    Email author
  • Yabin Gao
    • 1
  • Yunfei Yin
    • 1
  • Jiahui Wang
    • 2
  • Wensheng Luo
    • 1
  • Guanghui Sun
    • 1
  1. 1.School of AstronauticsHarbin Institute of TechnologyHarbinChina
  2. 2.College of AutomationHarbin Engineering UniversityHarbinChina

Personalised recommendations