Advertisement

Sliding Mode Observer of PEMFC Systems

  • Jianxing LiuEmail author
  • Yabin Gao
  • Yunfei Yin
  • Jiahui Wang
  • Wensheng Luo
  • Guanghui Sun
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 249)

Abstract

As mentioned in the general introduction, it is not always possible to use sensors for measurements, either due to prohibitive costs of the sensing technology or because the quantity is not directly measurable. For precise control applications, state observer can be used for obtaining unavailable state values instead of sensors. A brief survey of existing methods in order to define the context of our work.

References

  1. 1.
    Adetola, V., Guay, M.: Finite-time parameter estimation in adaptive control of nonlinear systems. IEEE Trans. Autom. Control. 53(3), 807–811 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arcak, M., Görgün, H., Pedersen, L.M., Varigonda, S.: A nonlinear observer design for fuel cell hydrogen estimation. IEEE Trans. Control. Syst. Technol. 12(1), 101–110 (2004)CrossRefGoogle Scholar
  3. 3.
    Arcak, M., Kokotovic, P.: Observer-based control of systems with slope-restricted nonlinearities. IEEE Trans. Autom. Control. 46(7), 1146–1150 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Arce, A., Alejandro, J., Bordons, C., Ramirez, D.R.: Real-time implementation of a constrained MPC for efficient airflow control in a PEM fuel cell. IEEE Trans. Ind. Electron. 57(6), 1892–1905 (2009)CrossRefGoogle Scholar
  5. 5.
    Barbir, F., Gorgun, H., Wang, X.: Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells. J. Power Sources 141(1), 96–101 (2005)CrossRefGoogle Scholar
  6. 6.
    Bhat, S., Bernstein, D.: Finite-time stability of continuous autonomous systems. SIAM J. Control. Optim. 38(3), 751–766 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chen, F., Chu, H.S., Soong, C.Y., Yan, W.M.: Effective schemes to control the dynamic behavior of the water transport in the membrane of PEM fuel cell. J. Power Sources 140(2), 243–249 (2005)CrossRefGoogle Scholar
  8. 8.
    Chen, P.C.: Output-feedback voltage tracking control for input-constrained PEM fuel cell systems. Int. J. Hydrog. Energy 36(22), 14608–14621 (2011)CrossRefGoogle Scholar
  9. 9.
    Choe, S.Y., Ahn, J.W., Lee, J.G., Baek, S.H.: Dynamic simulator for a PEM fuel cell system with a PWM DC/DC converter. IEEE Trans. Energy Convers. 23(2), 669–680 (2008)CrossRefGoogle Scholar
  10. 10.
    Diop, S., Grizzle, J., Moraal, P., Stefanopoulou, A.: Interpolation and numerical differentiation for observer design. In: Proceedings of the American Control Conference, vol. 2, pp. 1329–1329. American Automatic Control Council (1994)Google Scholar
  11. 11.
    Fan, X., Arcak, M.: Observer design for systems with multivariable monotone nonlinearities. Syst. Control. Lett. 50(4), 319–330 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gao, F., Blunier, B., Simoes, M.G., Miraoui, A.: PEM fuel cell stack modeling for real-time emulation in hardware-in-the-loop applications. IEEE Trans. Energy Convers. 26(1), 184–194 (2011)CrossRefGoogle Scholar
  13. 13.
    Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems applications to bioreactors. IEEE Trans. Autom. Control. 37(6), 875–880 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Görgün, H., Arcak, M., Barbir, F.: An algorithm for estimation of membrane water content in PEM fuel cells. J. Power Sources 157(1), 389–394 (2006)CrossRefGoogle Scholar
  15. 15.
    Görgün, H., Arcak, M., Varigonda, S., Bortoff, S.A.: Observer designs for fuel processing reactors in fuel cell power systems. Int. J. Hydrog. Energy 30(4), 447–457 (2005)CrossRefGoogle Scholar
  16. 16.
    Grove, W., Egeland, O.: A small voltaic battery of great energy. Philos. Mag. 15, 287–293 (1839)Google Scholar
  17. 17.
    Ibrir, S.: Online exact differentiation and notion of asymptotic algebraic observers. IEEE Trans. Autom. Control 48(11), 2055–2060 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ibrir, S.: Algebraic observer design for a class of uniformly-observable nonlinear systems: application to 2-link robotic manipulator. In: 2009 7th Asian Control Conference, pp. 390–395. IEEE (2009)Google Scholar
  19. 19.
    Ingimundarson, A., Stefanopoulou, A.G., McKay, D.A.: Model-based detection of hydrogen leaks in a fuel cell stack. IEEE Trans. Control. Syst. Technol 16(5), 1004–1012 (2008)CrossRefGoogle Scholar
  20. 20.
    Isidori, A.: Nonlinear control systems, vol. 1. Springer (1995)Google Scholar
  21. 21.
    Jemeï, S., Hissel, D., Pera, M.C., Kauffmann, J.M.: A new modeling approach of embedded fuel-cell power generators based on artificial neural network. IEEE Trans. Ind. Electron. 55(1), 437–447 (2008)CrossRefGoogle Scholar
  22. 22.
    Jung, J.H., Ahmed, S., Enjeti, P.: PEM fuel cell stack model development for real-time simulation applications. IEEE Trans. Ind. Electron. 58(9), 4217–4231 (2011)CrossRefGoogle Scholar
  23. 23.
    Karnik, A.Y., Sun, J., Stefanopoulou, A.G., Buckland, J.H.: Humidity and pressure regulation in a PEM fuel cell using a gain-scheduled static feedback controller. IEEE Trans. Control. Syst. Technol. 17(2), 283–297 (2009)CrossRefGoogle Scholar
  24. 24.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall (2001)Google Scholar
  25. 25.
    Kirubakaran, A., Jain, S., Nema, R.K.: A review on fuel cell technologies and power electronic interface. Renew. Sustain. Energy Rev. 13(9), 2430–2440 (2009)CrossRefGoogle Scholar
  26. 26.
    Kunusch, C., Moreno, J., Angulo, M.: Identification and observation in the anode line of PEM fuel cell stacks. In: IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 1665–1670. IEEE (2013)Google Scholar
  27. 27.
    Larminie, J., Dicks, A., McDonald, M.S.: Fuel Cell Systems Explained, vol. 2. Wiley, Chichester (2003)CrossRefGoogle Scholar
  28. 28.
    Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Li, Q., Chen, W., Wang, Y., Jia, J., Han, M.: Nonlinear robust control of proton exchange membrane fuel cell by state feedback exact linearization. J. Power Sources 194(1), 338–348 (2009)CrossRefGoogle Scholar
  32. 32.
    Lira, S.D., Puig, V., Quevedo, J., Husar, A.: LPV observer design for PEM fuel cell system: Application to fault detection. J. Power Sources 196(9), 4298–4305 (2011)CrossRefGoogle Scholar
  33. 33.
    Liu, J., Laghrouche, S., Ahmed, F.S., Wack, M.: PEM fuel cell air-feed system observer design for automotive applications: an adaptive numerical differentiation approach. Int. J. Hydrog. Energy 39(30), 210–17 (2014)CrossRefGoogle Scholar
  34. 34.
    Ljung, L., Glad, T.: On global identifiability for arbitrary model parametrizations. Automatica 30(2), 265–276 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Matraji, I., Laghrouche, S., Wack, M.: Pressure control in a PEM fuel cell via second order sliding mode. Int. J. Hydrog. Energy 37(21), 16104–16116 (2012)CrossRefGoogle Scholar
  36. 36.
    Moreno, J., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control (CDC), pp. 2856–2861. IEEE (2008)Google Scholar
  37. 37.
    Moreno, J.A.: Lyapunov function for Levant’s second order differentiator. In: IEEE 51st Annual Conference on Decision and Control (CDC), pp. 6448–6453. IEEE (2012)Google Scholar
  38. 38.
    Murshed, A., Huang, B., Nandakumar, K.: Estimation and control of solid oxide fuel cell system. Comput. Chem. Eng. 34(1), 96–111 (2010)CrossRefGoogle Scholar
  39. 39.
    Na, W.K., Gou, B.: Feedback-linearization-based nonlinear control for pem fuel cells. IEEE Trans. Energy Convers. 23(1), 179–190 (2008)CrossRefGoogle Scholar
  40. 40.
    Paja, C.A.R., Nevado, A.R., Castillón, R.G., Martinez-Salamero, L., Saenz, C.I.S.: Switching and linear power stages evaluation for PEM fuel cell emulation. Int. J. Circuit Theory Appl. 39(5), 475–499 (2011)CrossRefGoogle Scholar
  41. 41.
    Pukrushpan, J., Peng, H., Stefanopoulou, A.: Control-oriented modeling and analysis for automotive fuel cellsystems. ASME J. Dyn. Syst. Meas. Control. 126(1), 14–25 (2004)CrossRefGoogle Scholar
  42. 42.
    Pukrushpan, J., Stefanopoulou, A., Peng, H.: Control of fuel cell breathing. IEEE Control Syst. 24(2), 30–46 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Pukrushpan, J., Stefanopoulou, A., Peng, H.: Control of fuel cell breathing: initial results on the oxygen starvation problem. IEEE Control. Syst. Mag. 24(2), 30–46 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Ramos-Paja, C.A., Giral, R., Martinez-Salamero, L., Romano, J., Romero, A., Spagnuolo, G.: A PEM fuel-cell model featuring oxygen-excess-ratio estimation and power-electronics interaction. IEEE Trans. Ind. Electron. 57(6), 1914–1924 (2010)CrossRefGoogle Scholar
  45. 45.
    Ramos Paja, C.A., Romero Nevado, A., Giral Castillón, R., Martinez-Salamero, L., Sanchez Saenz, C.I.: Switching and linear power stages evaluation for PEM fuel cell emulation. Int. J. Circuit Theory Appl. 39(5), 475–499 (2011)CrossRefGoogle Scholar
  46. 46.
    Restrepo, C., Ramos-Paja, C.A., Giral, R., Calvente, J., Romero, A.: Fuel cell emulator for oxygen excess ratio estimation on power electronics applications. Comput. Electr. Eng. 38(4), 926–937 (2012)CrossRefGoogle Scholar
  47. 47.
    Shtessel, Y.B., Baev, S., Edwards, C., Spurgeon, S.: HOSM observer for a class of non-minimum phase causal nonlinear mimo systems. IEEE Trans. Autom. Control. 55(2), 543–548 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Slotine, J.J.E., Li, W., et al.: Applied nonlinear control, vol. 199. Prentice Hall New Jersey (1991)Google Scholar
  49. 49.
    Song, R.H., Kim, C.S., Shin, D.R.: Effects of flow rate and starvation of reactant gases on the performance of phosphoric acid fuel cells. J. Power Sources 86(1–2), 289–293 (2000)CrossRefGoogle Scholar
  50. 50.
    Talj, R.J., Hissel, D., Ortega, R., Becherif, M., Hilairet, M.: Experimental validation of a PEM fuel-cell reduced-order model and a moto-compressor higher order sliding-mode control. IEEE Trans. Ind. Electron. 57(6), 1906–1913 (2010)CrossRefGoogle Scholar
  51. 51.
    Thawornkuno, C., Panjapornpon, C.: Estimation of water content in PEM fuel cell. Chiang Mai J. Sci. 35(1), 212–220 (2008)Google Scholar
  52. 52.
    Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)zbMATHCrossRefGoogle Scholar
  53. 53.
    Vepa, R.: Adaptive state estimation of a PEM fuel cell. IEEE Trans. Energy Convers. 27(2), 457–467 (2012)CrossRefGoogle Scholar
  54. 54.
    Xiao, B., Hu, Q., Zhang, Y.: Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation. IEEE Trans. Control. Syst. Technol. 20(6), 1605–1612 (2012)CrossRefGoogle Scholar
  55. 55.
    Yan, X.G., Spurgeon, S.K., Edwards, C.: State and parameter estimation for nonlinear delay systems using sliding mode techniques. IEEE Trans. Autom. Control 58(4), 1023–1029 (2013)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jianxing Liu
    • 1
    Email author
  • Yabin Gao
    • 1
  • Yunfei Yin
    • 1
  • Jiahui Wang
    • 2
  • Wensheng Luo
    • 1
  • Guanghui Sun
    • 1
  1. 1.School of AstronauticsHarbin Institute of TechnologyHarbinChina
  2. 2.College of AutomationHarbin Engineering UniversityHarbinChina

Personalised recommendations