Advertisement

Sliding Mode Observer and Its Applications

  • Jianxing LiuEmail author
  • Yabin Gao
  • Yunfei Yin
  • Jiahui Wang
  • Wensheng Luo
  • Guanghui Sun
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 249)

Abstract

SMOs have found wide application in the areas of fault detection, fault reconstruction and health monitoring in recent years. Their well-known advantages are robustness and insensitivity to external disturbance. Higher-order SMOs have better performance as compared to classical sliding mode based observers because their output is continuous and does not require filtering. However, insofar as we are aware, their application in FDI has remained unstudied. In this chapter, we shall develop the theoretical background of SMOs and SMO-based FDI. A bibliographical study of existing approaches in these fields will be followed by a brief presentation of some established first order and second order SMO algorithms.

References

  1. 1.
    Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory. Springer (2005)Google Scholar
  2. 2.
    Besançon, G.: High-gain observation with disturbance attenuation and application to robust fault detection. Automatica 39(6), 1095–1102 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chen, J., Patton, R., Zhang, H.: Design of unknown input observers and robust fault detection filters. Int. J. Control. 63(1), 85–105 (1996)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Dávila, A., Moreno, J., Fridman, L.: Optimal Lyapunov function selection for reaching time estimation of super twisting algorithm. In: Proceedings of the 48th IEEE Conference on Decision and Control, held jointly with the 28th Chinese Control Conference (CDC/CCC), pp. 8405–8410. IEEE (2009)Google Scholar
  5. 5.
    Davila, J., Fridman, L., Levant, A., et al.: Second-order sliding-mode observer for mechanical systems. IEEE Trans. Autom. Control. 50(11), 1785–1789 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Edwards, C., Spurgeon, S.K., Patton, R.J.: Sliding mode observers for fault detection and isolation. Automatica 36(4), 541–553 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Edwards, C., Tan, C.P.: Sensor fault tolerant control using sliding mode observers. Control. Eng. Pract. 14(8), 897–908 (2006)CrossRefGoogle Scholar
  8. 8.
    Filippov, A., Arscott, F.: Differential Equations with Discontinuous Righthand Sides: Control Systems, vol. 18. Springer (1988)Google Scholar
  9. 9.
    Floquet, T., Barbot, J.P.: Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs. Int. J. Syst. Sci. 38(10), 803–815 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Floquet, T., Edwards, C., Spurgeon, S.K.: On sliding mode observers for systems with unknown inputs. Int. J. Adapt. Control. Signal Process. 21(8–9), 638–656 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gonzalez, T., Moreno, J.A., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Autom. Control. 57(8), 2100–2105 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hong, Y., Wang, J., Xi, Z.: Stabilization of uncertain chained form systems within finite settling time. IEEE Trans. Autom. Control. 50(9), 1379–1384 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hou, M., Muller, P.: Design of observers for linear systems with unknown inputs. IEEE Trans. Autom. Control. 37(6), 871–875 (1992)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jiang, B., Staroswiecki, M., Cocquempot, V.: Fault estimation in nonlinear uncertain systems using robust/sliding-mode observers. IEE Proc.-Control. Theory Appl. 151(1), 29–37 (2004)CrossRefGoogle Scholar
  15. 15.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall (2001)Google Scholar
  16. 16.
    Kobayashi, S., Furuta, K.: Frequency characteristics of Levant’s differentiator and adaptive sliding mode differentiator. Int. J. Syst. Sci. 38(10), 825–832 (2007)CrossRefGoogle Scholar
  17. 17.
    Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liu, J., Laghrouche, S., Wack, M.: Finite time observer design for a class of nonlinear systems with unknown inputs. In: American Control Conference (ACC), pp. 286–291. IEEE (2013)Google Scholar
  19. 19.
    Moreno, J., Osorio, M.: Strict Lyapunov functions for the super-twisting algorithm. IEEE Trans. Autom. Control. 57(4), 1035–1040 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Moreno, J.A., Osorio, M.: A Lyapunov approach to second-order sliding mode controllers and observers. In: 47th IEEE Conference on Decision and Control(CDC), pp. 2856–2861. IEEE (2008)Google Scholar
  21. 21.
    Orlov, Y.: Finite time stability and robust control synthesis of uncertain switched systems. SIAM J. Control. Optim. 43(4), 1253–1271 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Persis, C.D., Isidori, A.: A geometric approach to nonlinear fault detection and isolation. IEEE Trans. Autom. Control. 46(6), 853–865 (2001)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Qiu, Z., Gertler, J.: Robust FDI systems and \(H_\infty \)-optimization-disturbances and tall fault case. In: Proceedings of the 32nd IEEE Conference on Decision and Control, USA, pp. 1710–1715 (1993)Google Scholar
  24. 24.
    Rajamani, R.: Observers for Lipschitz nonlinear systems. IEEE Trans. Autom. Control. 43(3), 397–401 (1998)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Respondek, W., Pogromsky, A., Nijmeijer, H.: Time scaling for observer design with linearizable error dynamics. Automatica 40(2), 277–285 (2004)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Saif, M., Guan, Y.: A new approach to robust fault detection and identification. IEEE Trans. Aerosp. Electron. Syst. 29(3), 685–695 (1993)CrossRefGoogle Scholar
  27. 27.
    Slotine, J.J., Hedrick, J., Misawa, E.: On sliding observers for nonlinear systems. In: American Control Conference, pp. 1794–1800. IEEE (1986)Google Scholar
  28. 28.
    Slotine, J.J.E., Hedrick, J.K., Misawa, E.A.: On sliding observers for nonlinear systems. ASME J. Dyn. Syst. Meas. Control. 109, 245–252 (1987)CrossRefGoogle Scholar
  29. 29.
    Spurgeon, S.K.: Sliding mode observers: a survey. Int. J. Syst. Sci. 39(8), 751–764 (2008)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tan, C., Edwards, C.: Sliding mode observers for detection and reconstruction of sensor faults. Automatica 38(10), 1815–1821 (2002)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tan, C., Edwards, C.: Sliding mode observers for robust detection and reconstruction of actuator and sensor faults. Int. J. Robust Nonlinear Control. 13(5), 443–463 (2003)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin (1992)CrossRefGoogle Scholar
  33. 33.
    Veluvolu, K.C., Defoort, M., Soh, Y.C.: High-gain observer with sliding mode for nonlinear state estimation and fault reconstruction. J. Frankl. Inst. 351(4), 1995–2014 (2014)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Walcott, B., Żak, S.: State observation of nonlinear uncertain dynamical systems. IEEE Trans. Autom. Control. 32(2), 166–170 (1987)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wang, H., Huang, Z.J., Daley, S.: On the use of adaptive updating rules for actuator and sensor fault diagnosis. Automatica 33, 217–225 (1997)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Yan, X., Edwards, C.: Nonlinear robust fault reconstruction and estimation using a sliding mode observer. Automatica 43(9), 1605–1614 (2007)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Yan, X., Edwards, C.: Adaptive sliding-mode-observer-based fault reconstruction for nonlinear systems with parametric uncertainties. IEEE Trans. Ind. Electron. 55(11), 4029–4036 (2008)CrossRefGoogle Scholar
  38. 38.
    Yang, H., Saif, M.: Nonlinear adaptive observer design for fault detection. In: Proceedings of the American Control Conference, USA, pp. 1136–1139 (1995)Google Scholar
  39. 39.
    Zhang, X., Polycarpou, M., Parisini, T.: Fault diagnosis of a class of nonlinear uncertain systems with lipschitz nonlinearities using adaptive estimation. Automatica 46(2), 290–299 (2010)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Zhou, K., Doyle, J.C., Glover, K., et al.: Robust and optimal control, vol. 40. Prentice Hall, New Jersey (1996)Google Scholar
  41. 41.
    Zubov, V.: Methods of A.M. Lyapunov and Their Application. P. Noordhoff (1964)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jianxing Liu
    • 1
    Email author
  • Yabin Gao
    • 1
  • Yunfei Yin
    • 1
  • Jiahui Wang
    • 2
  • Wensheng Luo
    • 1
  • Guanghui Sun
    • 1
  1. 1.School of AstronauticsHarbin Institute of TechnologyHarbinChina
  2. 2.College of AutomationHarbin Engineering UniversityHarbinChina

Personalised recommendations