Advertisement

Basic Theory of Sliding Mode Control

  • Jianxing LiuEmail author
  • Yabin Gao
  • Yunfei Yin
  • Jiahui Wang
  • Wensheng Luo
  • Guanghui Sun
Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 249)

Abstract

This chapter introduces some fundamentals of SMC including SMC design methods and main approaches to alleviate or limit the chattering. Moreover, some second-order SMC algorithms and definitions are introduced. It also presents the basics for the theoretical results developed in the subsequent chapters.

References

  1. 1.
    Acary, V., Brogliato, B., Orlov, Y.V.: Chattering-free digital sliding-mode control with state observer and disturbance rejection. IEEE Trans. Autom. Control 57(5), 1087–1101 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bartolini, G., Ferrara, A., Usai, E.: Applications of a sub-optimal discontinuous control algorithm for uncertain second order systems. Int. J. Robust Nonlinear Control 7(4), 299–319 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bartolini, G., Ferrara, A., Usai, E., Utkin, V.I.: On multi-input chattering-free second-order sliding mode control. IEEE Trans. Autom. Control 45(9), 1711–1717 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bartolini, G., Ferrara, A., Usani, E.: Chattering avoidance by second-order sliding mode control. IEEE Trans. Autom. Control 43(2), 241–246 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cao, W., Xu, J.: Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems. IEEE Trans. Autom. Control 49(8), 1355–1360 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Castaños, F., Fridman, L.: Analysis and design of integral sliding manifolds for systems with unmatched perturbations. IEEE Trans. Autom. Control 51(5), 853–858 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chan, M., Tao, C., Lee, T.: Sliding mode controller for linear systems with mismatched time-varying uncertainties. J. Frankl. Inst. 337(2), 105–115 (2000)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Choi, H.H.: On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties. Automatica 35(10), 1707–1715 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Choi, H.H.: Variable structure control of dynamical systems with mismatched norm-bounded uncertainties: an LMI approach. Int. J. Control 74(13), 1324–1334 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Choi, H.H.: LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems. IEEE Trans. Autom. Control 52(4), 736–742 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. CRC Press (1998)Google Scholar
  12. 12.
    Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor & Francis (1998)Google Scholar
  13. 13.
    Efe, M.Ö., Ünsal, C., Kaynak, O., Yu, X.: Variable structure control of a class of uncertain systems. IEEE Trans. Autom. Control 40(1), 59–64 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Emel’Yanov, S., Korovin, S., Levant, A.: Highorder sliding modes in control systems. Comput. Math. Model. 7(3), 294–318 (1996)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Emelyanov, S., Utkin, V.: Application of automatic control systems of variable structure for the control of objects whose parameters vary over a wide range. DDoklady Akad. Nauk. SSSR 152(2), 299–301 (1963)MathSciNetGoogle Scholar
  16. 16.
    Filippov, A., Arscott, F.: Differential Equations with Discontinuous Righthand Sides: Control Systems, vol. 18. Springer (1988)Google Scholar
  17. 17.
    Gao, W., Wang, Y., Homaifa, A.: Discrete-time variable structure control systems. IEEE Trans. Ind. Electron. 42(2), 117–122 (1995)CrossRefGoogle Scholar
  18. 18.
    Gonzalez, T., Moreno, J.A., Fridman, L.: Variable gain super-twisting sliding mode control. IEEE Trans. Autom. Control 57(8), 2100–2105 (2012)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE Trans. Ind. Electron. 40(1), 2–22 (1993)CrossRefGoogle Scholar
  20. 20.
    Isidori, A.: Nonlinear Control Systems, vol. 1. Springer (1995)Google Scholar
  21. 21.
    Itkis, U.: Control Systems of Variable Structure. Wiley, New York (1976)Google Scholar
  22. 22.
    Kaynak, O., Erbatur, K., Ertugnrl, M.: The fusion of computationally intelligent methodologies and sliding-mode control–a survey. IEEE Trans. Ind. Electron. 48(1), 4–17 (2001)CrossRefGoogle Scholar
  23. 23.
    Kwan, C.M.: Sliding mode control of linear systems with mismatched uncertainties. IEEE Trans. Autom. Control 31(2), 303–307 (1995)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Lee, H., Utkin, V.I.: Chattering suppression methods in sliding mode control systems. Annu. Rev. Control 31(2), 179–188 (2007)CrossRefGoogle Scholar
  25. 25.
    Levant, A.: Sliding order and sliding accuracy in sliding mode control. Int. J. Control 58(6), 1247–1263 (1993)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9–10), 924–941 (2003)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Levant, A.: Homogeneity approach to high-order sliding mode design. Automatica 41(5), 823–830 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Moreno, J.A.: Lyapunov analysis of non homogeneous super-twisting algorithms. In: 11th International Workshop on Variable Structure Systems (VSS), pp. 534–539. IEEE (2010)Google Scholar
  30. 30.
    Perruquetti, W., Barbot, J.P.: Sliding Mode Control in Engineering. CRC Press (2002)Google Scholar
  31. 31.
    Sabanovic, A., Fridman, L.M., Spurgeon, S.K.: Variable Structure Systems: From Principles to Implementation, vol. 66. IET (2004)Google Scholar
  32. 32.
    Sellami, A., Arzelier, D., M’hiri, R., Zrida, J.: A sliding mode control approach for systems subjected to a norm-bounded uncertainty. Int. J. Robust Nonlinear Control 17(4), 327–346 (2007)Google Scholar
  33. 33.
    Slotine, J.J., Sastry, S.S.: Tracking control of nonlinear systems using sliding surface with application to robot manipulator. Int. J. Control 38(2), 931–938 (1983)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Takahashi, R.H.C., Peres, P.L.D.: \(\cal{H}_{2}\) guaranteed cost-switching surface design for sliding modes with nonmatching disturbances. IEEE Trans. Autom. Control 44(11), 2214–2218 (1999)Google Scholar
  35. 35.
    Utkin, V.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Utkin, V., Gulder, J., Shi, J.: Sliding Mode Control in Electro-mechanical Systems. Automation and Control Engineering Series, vol. 34. Taylor & Francis Group (2009)Google Scholar
  37. 37.
    Wong, L.K., Leung, F.H.F., Tam, P.K.S.: A chattering elimination algorithm for sliding mode control of uncertain non-linear systems. Mechatronics 8(7), 765–775 (1998)CrossRefGoogle Scholar
  38. 38.
    Wu, L., Shi, P., Su, X.: Sliding Mode Control of Uncertain Parameter-switching Hybrid Systems. Wiley (2014)Google Scholar
  39. 39.
    Zhihong, M., Paplinski, A., Wu, H.: A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators. IEEE Trans. Autom. Control 39(12), 2464–2469 (1994)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jianxing Liu
    • 1
    Email author
  • Yabin Gao
    • 1
  • Yunfei Yin
    • 1
  • Jiahui Wang
    • 2
  • Wensheng Luo
    • 1
  • Guanghui Sun
    • 1
  1. 1.School of AstronauticsHarbin Institute of TechnologyHarbinChina
  2. 2.College of AutomationHarbin Engineering UniversityHarbinChina

Personalised recommendations