Advertisement

On the Detection of GAN-Based Face Morphs Using Established Morph Detectors

  • Luca DebiasiEmail author
  • Naser Damer
  • Alexandra Moseguí­ Saladié
  • Christian Rathgeb
  • Ulrich Scherhag
  • Christoph Busch
  • Florian Kirchbuchner
  • Andreas Uhl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11752)

Abstract

Face recognition systems (FRS) have been found to be highly vulnerable to face morphing attacks. Due to this severe security risk, morph detection systems do not only need to be robust against classical landmark-based face morphing approach (LMA), but also future attacks such as neural network based morph generation techniques. The focus of this paper lies on an experimental evaluation of the morph detection capabilities of various state-of-the-art morph detectors with respect to a recently presented novel face morphing approach, MorGAN, which is based on Generative Adversarial Networks (GANs).

In this work, existing detection algorithms are confronted with different attack scenarios: known and unknown attacks comprising different morph types (LMA and MorGAN). The detectors’ performance results are highly dependent on the features used by the detection algorithms. In addition, the image quality of the morphed face images produced with the MorGAN approach is assessed using well-established no-reference image quality metrics and compared to LMA morphs. The results indicate that the image quality of MorGAN morphs is more similar to bona fide images compared to classical LMA morphs.

Keywords

Face morphing Generative adversial networks Presentation attack detection 

References

  1. 1.
    Damer, N., et al.: Detecting face morphing attacks by analyzing the directed distances of facial landmarks shifts. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 518–534. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-12939-2_36CrossRefGoogle Scholar
  2. 2.
    Damer, N., Saladie, A.M., Braun, A., Kuijper, A.: MorGAN: recognition vulnerability and attack detectability of face morphing attacks created by generative adversarial network. In: 9th IEEE International Conference on Biometrics Theory, Applications and Systems (BTAS 2018). IEEE (2018)Google Scholar
  3. 3.
    Debiasi, L., Rathgeb, C., Scherhag, U., Uhl, A., Busch, C.: PRNU variance analysis for morphed face image detection. In: Proceedings of the IEEE 9th International Conference on Biometrics: Theory, Applications, and Systems (BTAS 2018), Los Angeles, California, USA, pp. 1–8, October 2018Google Scholar
  4. 4.
    Debiasi, L., Scherhag, U., Rathgeb, C., Uhl, A., Busch, C.: PRNU-based detection of morphed face images. In: 2018 International Workshop on Biometrics and Forensics (IWBF 2018), pp. 1–7, June 2018Google Scholar
  5. 5.
    Debiasi, L., Uhl, A.: PRNU enhancement effects on biometric source sensor attribution. IET Biometrics 6(4), 256–265 (2017)CrossRefGoogle Scholar
  6. 6.
    Ferrara, M., Franco, A., Maltoni, D.: The magic passport. In: IEEE International Joint Conference on Biometrics (IJCB 2014), pp. 1–7. IEEE (2014)Google Scholar
  7. 7.
    Ferrara, M., Franco, A., Maltoni, D.: On the effects of image alterations on face recognition accuracy. In: Bourlai, T. (ed.) Face Recognition Across the Imaging Spectrum, pp. 195–222. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-28501-6_9CrossRefGoogle Scholar
  8. 8.
    Ferrara, M., Franco, A., Maltoni, D.: Face demorphing. IEEE Trans. Inf. Forensics Secur. 13(4), 1008–1017 (2018)CrossRefGoogle Scholar
  9. 9.
    ISO/IEC JTC1 SC37 Biometrics: ISO/IEC IS 30107–3:2017, IT - Biometric presentation attack detection - Part 3: Testing and ReportingGoogle Scholar
  10. 10.
    Liu, L., Hua, Y., Zhao, Q., Huang, H., Bovik, A.C.: Blind image quality assessment by relative gradient statistics and adaboosting neural network. Sig. Process. Image Commun. 40, 1–15 (2016)CrossRefGoogle Scholar
  11. 11.
    Liu, L., Liu, B., Huang, H., Bovik, A.C.: No-reference image quality assessment based on spatial and spectral entropies. Sig. Process. Image Commun. 29(8), 856–863 (2014)CrossRefGoogle Scholar
  12. 12.
    Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV 2015), December 2015Google Scholar
  13. 13.
    Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mohammadi, A., Bhattacharjee, S., Marcel, S.: Deeply vulnerable: a study of the robustness of face recognition to presentation attacks. IET Biometrics 7(1), 15–26 (2018)CrossRefGoogle Scholar
  15. 15.
    Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010)CrossRefGoogle Scholar
  16. 16.
    Neubert, T.: Face morphing detection: an approach based on image degradation analysis. In: Kraetzer, C., Shi, Y.-Q., Dittmann, J., Kim, H.J. (eds.) IWDW 2017. LNCS, vol. 10431, pp. 93–106. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64185-0_8CrossRefGoogle Scholar
  17. 17.
    Ramachandra, R., Raja, K.B., Venkatesh, S., Busch, C.: Face morphing versus face averaging: Vulnerability and detection. In: IEEE International Joint Conference on Biometrics (IJCB 2017), pp. 555–563. IEEE (2017)Google Scholar
  18. 18.
    Ramachandra, R., Raja, K.B., Venkatesh, S., Busch, C.: Transferable deep-CNN features for detecting digital and print-scanned morphed face images. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, CVPR, pp. 1822–1830. IEEE Computer Society (2017)Google Scholar
  19. 19.
    Ramachandra, R., Raja, K.B., Busch, C.: Detecting morphed face images. In: 8th IEEE International Conference on Biometrics Theory, Applications and Systems (BTAS 2016), pp. 1–7. IEEE (2016)Google Scholar
  20. 20.
    Robertson, D.J., Kramer, R.S.S., Burton, A.M.: Fraudulent id using face morphs: experiments on human and automatic recognition. PLoS ONE 12(3), 1–12 (2017)Google Scholar
  21. 21.
    Scherhag, U., Budhrani, D., Gomez-Barrero, M., Busch, C.: Detecting morphed face images using facial landmarks. In: Mansouri, A., El Moataz, A., Nouboud, F., Mammass, D. (eds.) ICISP 2018. LNCS, vol. 10884, pp. 444–452. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-94211-7_48CrossRefGoogle Scholar
  22. 22.
    Scherhag, U., et al.: Biometric systems under morphing attacks: assessment of morphing techniques and vulnerability reporting. In: International Conference of the Biometrics Special Interest Group (BIOSIG 2017), pp. 1–12 (2017)Google Scholar
  23. 23.
    Scherhag, U., Ramachandra, R., Raja, K.B., Gomez-Barrero, M., Rathgeb, C., Busch, C.: On the vulnerability of face recognition systems towards morphed face attacks. In: 5th International Workshop on Biometrics and Forensics (IWBF 2017), pp. 1–6. IEEE (2017)Google Scholar
  24. 24.
    Scherhag, U., Rathgeb, C., Busch, C.: Towards detection of morphed face images in electronic travel documents. In: 13th IAPR International Workshop on Document Analysis Systems (DAS 2018), pp. 187–192. IEEE Computer Society (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luca Debiasi
    • 1
    Email author
  • Naser Damer
    • 2
    • 3
  • Alexandra Moseguí­ Saladié
    • 2
  • Christian Rathgeb
    • 4
  • Ulrich Scherhag
    • 4
  • Christoph Busch
    • 4
  • Florian Kirchbuchner
    • 2
  • Andreas Uhl
    • 1
  1. 1.University of SalzburgSalzburgAustria
  2. 2.Fraunhofer Institute for Computer Graphics Research IGDDarmstadtGermany
  3. 3.TU DarmstadtDarmstadtGermany
  4. 4.Hochschule DarmstadtDarmstadtGermany

Personalised recommendations