Advertisement

Improving the Performance of Thinning Algorithms with Directed Rooted Acyclic Graphs

  • Federico BolelliEmail author
  • Costantino Grana
Conference paper
  • 493 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11752)

Abstract

In this paper we propose a strategy to optimize the performance of thinning algorithms. This solution is obtained by combining three proven strategies for binary images neighborhood exploration, namely modeling the problem with an optimal decision tree, reusing pixels from the previous step of the algorithm, and reducing the code footprint by means of Directed Rooted Acyclic Graphs. A complete and open-source benchmarking suite is also provided. Experimental results confirm that the proposed algorithms clearly outperform classical implementations.

Keywords

Thinning Skeletonization Optimization Decision trees Binary image processing 

References

  1. 1.
    Agam, G., Argamon, S., Frieder, O., Grossman, D., Lewis, D.: The complex document image processing (CDIP) test collection project. Illinois Institute of Technology (2006)Google Scholar
  2. 2.
    Bolelli, F.: Indexing of historical document images: ad hoc dewarping technique for handwritten text. In: Grana, C., Baraldi, L. (eds.) IRCDL 2017. CCIS, vol. 733, pp. 45–55. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68130-6_4CrossRefGoogle Scholar
  3. 3.
    Bolelli, F., Baraldi, L., Cancilla, M., Grana, C.: Connected Components Labeling on DRAGs. In: International Conference on Pattern Recognition (ICPR), pp. 121–126. IEEE (2018)Google Scholar
  4. 4.
    Bolelli, F., Borghi, G., Grana, C.: Historical handwritten text images word spotting through sliding window hog features. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 729–738. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68560-1_65CrossRefGoogle Scholar
  5. 5.
    Bolelli, F., Borghi, G., Grana, C.: XDOCS: an application to index historical documents. In: Serra, G., Tasso, C. (eds.) IRCDL 2018. CCIS, vol. 806, pp. 151–162. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-73165-0_15CrossRefGoogle Scholar
  6. 6.
    Bolelli, F., Cancilla, M., Baraldi, L., Grana, C.: Connected components labeling on DRAGs: implementation and reproducibility notes. In: Kerautret, B., Colom, M., Lopresti, D., Monasse, P., Talbot, H. (eds.) RRPR 2018. LNCS, vol. 11455, pp. 89–93. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-23987-9_7CrossRefGoogle Scholar
  7. 7.
    Chaudhuri, B.B., Adak, C.: An approach for detecting and cleaning of struck-out handwritten text. Pattern Recogn. 61, 282–294 (2017)CrossRefGoogle Scholar
  8. 8.
    Chen, Y.S., Hsu, W.H.: A modified fast parallel algorithm for thinning digital patterns. Pattern Recogn. Lett. 7(2), 99–106 (1988)CrossRefGoogle Scholar
  9. 9.
    Chen, Y.S., Hsu, W.H.: A modified fast parallel algorithm for thinning digital patterns. Pattern Recogn. Lett. 7(2), 99–106 (1988).  https://doi.org/10.1016/0167-8655(88)90124-9CrossRefGoogle Scholar
  10. 10.
    Deutsch, E.S.: Thinning algorithms on rectangular, hexagonal, and triangular arrays. Commun. ACM 15(9), 827–837 (1972)CrossRefGoogle Scholar
  11. 11.
    Dinneen, G.: Programming pattern recognition. In: Proceedings of the Western Joint Computer Conference, pp. 94–100. ACM (1955)Google Scholar
  12. 12.
    Grana, C., Baraldi, L., Bolelli, F.: Optimized connected components labeling with pixel prediction. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 431–440. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48680-2_38CrossRefGoogle Scholar
  13. 13.
    Grana, C., Borghesani, D.: Optimal decision tree synthesis for efficient neighborhood computation. In: Serra, R., Cucchiara, R. (eds.) AI*IA 2009. LNCS (LNAI), vol. 5883, pp. 92–101. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10291-2_10CrossRefGoogle Scholar
  14. 14.
    Grana, C., Borghesani, D., Cucchiara, R.: Decision trees for fast thinning algorithms. In: 20th International Conference on Pattern Recognition (ICPR), pp. 2836–2839 (2010)Google Scholar
  15. 15.
    Guo, Z., Hall, R.W.: Parallel thinning with two-subiteration algorithms. Commun. ACM 32(3), 359–373 (1989)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hall, R.W.: Fast parallel thinning algorithms: parallel speed and connectivity preservation. Commun. ACM 32(1), 124–131 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    The Hamlet Dataset. http://www.gutenberg.org. Accessed 02 May 2019
  18. 18.
    He, L., Zhao, X., Chao, Y., Suzuki, K.: Configuration-transition-based connected-component labeling. IEEE Trans. Image Process. 23(2), 943–951 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    He, S., Schomaker, L.: DeepOtsu: document enhancement and binarization using iterative deep learning. Pattern Recogn. 91, 379–390 (2019)CrossRefGoogle Scholar
  20. 20.
    Holt, C.M., Stewart, A., Clint, M., Perrott, R.H.: An improved parallel thinning algorithm. Commun. ACM 30(2), 156–160 (1987)CrossRefGoogle Scholar
  21. 21.
    Huang, T., Yang, G., Tang, G.: A fast two-dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Process. 27(1), 13–18 (1979)CrossRefGoogle Scholar
  22. 22.
    Khodadoust, J., Khodadoust, A.M.: Fingerprint indexing based on minutiae pairs and convex core point. Pattern Recogn. 67, 110–126 (2017)CrossRefGoogle Scholar
  23. 23.
    Lam, L., Lee, S.W., Suen, C.Y.: Thinning methodologies–a comprehensive survey. IEEE Trans. Pattern Anal. 14(9), 869–885 (1992).  https://doi.org/10.1109/34.161346CrossRefGoogle Scholar
  24. 24.
    Lewis, D., Agam, G., Argamon, S., Frieder, O., Grossman, D., Heard, J.: Building a test collection for complex document information processing. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 665–666. ACM (2006)Google Scholar
  25. 25.
    Lü, H., Wang, P.S.P.: A comment on “a fast parallel algorithm for thinning digital patterns”. Commun. ACM 29(3), 239–242 (1986)CrossRefGoogle Scholar
  26. 26.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, London (2009).  https://doi.org/10.1007/978-1-84882-254-2CrossRefzbMATHGoogle Scholar
  27. 27.
    Documentation of the thinning function in OpenCV. https://docs.opencv.org/4.0.0/df/d2d/group__ximgproc.html#ga37002c6ca80c978edb6ead5d6b39740c. Accessed 02 May 2019
  28. 28.
    Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)CrossRefGoogle Scholar
  29. 29.
    Schutte, L.J.: Survey of decision tables as a problem statement technique. CSD-TR 80, Computer Science Department, Purdue University (1973)Google Scholar
  30. 30.
    The legacy tobacco document library (LTDL). University of California, San Francisco (2007)Google Scholar
  31. 31.
    Source code of the THeBE benchmarking system. https://github.com/prittt/THeBE. Accessed 02 May 2019
  32. 32.
    The THeBE dataset. http://aimagelab.ing.unimore.it/files/THeBE_dataset.zip. Accessed 02 May 2019
  33. 33.
    Uslu, F., Bharath, A.A.: A recursive Bayesian approach to describe retinal vasculature geometry. Pattern Recogn. 87, 157–169 (2019)CrossRefGoogle Scholar
  34. 34.
    Wang, X., Jiang, X., Ren, J.: Blood vessel segmentation from fundus image by a cascade classification framework. Pattern Recogn. 88, 331–341 (2019)CrossRefGoogle Scholar
  35. 35.
    Zhang, T., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria “Enzo Ferrari”Università degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations