Advertisement

A Lightweight Secure IoT Surveillance Framework Based on DCT-DFRT Algorithms

  • Rafik HamzaEmail author
  • Alzubair Hassan
  • Akash Suresh Patil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11806)

Abstract

In this paper, we propose an energy-efficient surveillance framework for real-time video processing. The proposed framework guarantees the confidentiality of important frames and transfers them for a real-time decision. First, we extract the keyframes from the surveillance video using a lightweight summarization technique based on a fast histogram-clustering approach. Then, we employ an enhanced discrete cosine transform (DCT) compression technique to reduce the size of the extracted key frames. Finally, the cryptosystem encrypts these keyframes using a lightweight image encryption scheme based on discrete fractional random transform (DFRT) and Chen chaotic system. The proposed framework is fast and ensures real-time processing. Furthermore, this framework has the ability to reduce the transmission cost, and storage required during transmitting the video surveillance.

Keywords

Data compression Data encryption DFRT DCT Keyframes Surveillance video 

References

  1. 1.
    Taj-Eddin, I.A.T.F., Afifi, M., Korashy, M., Hamdy, D., Nasser, M., Derbaz, S.: A new compression technique for surveillance videos: evaluation using new dataset. In: 2016 Sixth International Conference on Digital Information and Communication Technology and its Applications (DICTAP), pp. 159–164. IEEE (2016)Google Scholar
  2. 2.
    Muhammad, K., Hamza, R., Ahmad, J., Lloret, J., Wang, H., Baik, S.W.: Secure surveillance framework for IoT systems using probabilistic image encryption. IEEE Trans. Ind. Inform. 14(8), 3679–3689 (2018)CrossRefGoogle Scholar
  3. 3.
    Patil, A.S., Tama, B.A., Park, Y., Rhee, K.-H.: A framework for blockchain based secure smart green house farming. In: Park, J.J., Loia, V., Yi, G., Sung, Y. (eds.) CUTE/CSA -2017. LNEE, vol. 474, pp. 1162–1167. Springer, Singapore (2018).  https://doi.org/10.1007/978-981-10-7605-3_185CrossRefGoogle Scholar
  4. 4.
    Jiaxin, W., Zhong, S., Jiang, J., Yang, Y.: A novel clustering method for static video summarization. Multimed. Tools Appl. 76(7), 9625–9641 (2017)CrossRefGoogle Scholar
  5. 5.
    Hamza, R., Muhammad, K., Lv, Z., Titouna, F.: Secure video summarization framework for personalized wireless capsule endoscopy. Pervasive Mob. Comput. 41, 436–450 (2017)CrossRefGoogle Scholar
  6. 6.
    Rochan, M., Ye, L., Wang, Y.: Video summarization using fully convolutional sequence networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 358–374. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01258-8_22CrossRefGoogle Scholar
  7. 7.
    Hamza, R., Yan, Z., Muhammad, K., Bellavista, P., Titouna, F.: A privacy-preserving cryptosystem for IoT E-healthcare. Inf. Sci. (2019).  https://doi.org/10.1016/j.ins.2019.01.070. ISSN: 0020-0255
  8. 8.
    Babu, R.V., Tom, M., Wadekar, P.: A survey on compressed domain video analysis techniques. Multimed. Tools Appl. 75(2), 1043–1078 (2016)CrossRefGoogle Scholar
  9. 9.
    Liu, Z., Zhao, H., Liu, S.: A discrete fractional random transform. Opt. Commun. 255(4–6), 357–365 (2005)CrossRefGoogle Scholar
  10. 10.
    Zhou, N., Dong, T., Wu, J.: Novel image encryption algorithm based on multiple-parameter discrete fractional random transform. Opt. Commun. 283(15), 3037–3042 (2010)CrossRefGoogle Scholar
  11. 11.
    Gong, L., Deng, C., Pan, S., Zhou, N.: Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform. Opt. Laser Technol. 103, 48–58 (2018)CrossRefGoogle Scholar
  12. 12.
    Wu, H., Sun, X., Yang, J., Zeng, W., Wu, F.: Lossless compression of JPEG coded photo collections. IEEE Trans. Image Process. 25(6), 2684–2696 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hamza, R.: A novel pseudo random sequence generator for image-cryptographic applications. J. Inf. Secur. Appl. 35, 119–127 (2017)Google Scholar
  14. 14.
    Zhang, M., Tong, X.: A new algorithm of image compression and encryption based on spatiotemporal cross chaotic system. Multimed. Tools Appl. 74(24), 11255–11279 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafik Hamza
    • 1
    Email author
  • Alzubair Hassan
    • 1
  • Akash Suresh Patil
    • 1
  1. 1.School of Computer Science and Cyber EngineeringGuangzhou UniversityGuangzhouChina

Personalised recommendations