Advertisement

Echo State Property of Neuronal Cell Cultures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11731)

Abstract

Physical reservoir computing (PRC) utilizes the nonlinear dynamics of physical systems, which is called a reservoir, as a computational resource. The prerequisite for physical dynamics to be a successful reservoir is to have the echo state property (ESP), asymptotic properties of transient trajectory to driving signals, with some memory held in the system. In this study, the prerequisites in dissociate cultures of cortical neuronal cells are estimated. With a state-of-the-art measuring system of high-dense CMOS array, our experiments demonstrated that each neuron exhibited reproducible spike trains in response to identical driving stimulus. Additionally, the memory function was estimated, which found that input information in the dynamics of neuronal activities in the culture up to at least 20 ms was retrieved. These results supported the notion that the cultures had ESP and could thereby serve as PRC.

Keywords

Neuronal cell culture Physical reservoir computing Echo state property Memory capacity 

Notes

Acknowledgments

This paper is based on results obtained from a project (Exploration of Neuromorphic Dynamics towards Future Symbiotic Society) commissioned by NEDO, KAKENHI grant (17K20090), AMED (JP18dm0307009) and Asahi Glass Foundation. We thank Hitachi UTokyo Laboratory, Hitachi, Ltd. for fruitful discussions. K. N. was supported by JST PRESTO Grant Number JPMJPR15E7, Japan and KAKENHI No. JP18H05472, No. 16KT0019, and No. JP15K16076.

References

  1. 1.
    Appeltant, L., et al.: Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).  https://doi.org/10.1038/ncomms1476CrossRefGoogle Scholar
  2. 2.
    Bakkum, D.J., et al.: The axon initial segment is the dominant contributor to the neuron’s extracellular electrical potential landscape. Adv. Biosyst. 3(2), 1800308 (2019).  https://doi.org/10.1002/adbi.201800308CrossRefGoogle Scholar
  3. 3.
    Brewer, G.J., Torricelli, J., Evege, E., Price, P.: Optimized survival of hippocampal neurons in B27-supplemented neurobasal\(^{\rm TM}\), a newserum-free medium combination. J. Neurosci. Res. 35(5), 567–576 (1993).  https://doi.org/10.1002/jnr.490350513CrossRefGoogle Scholar
  4. 4.
    Brunner, D., Soriano, M.C., Mirasso, C.R., Fischer, I.: Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013).  https://doi.org/10.1038/ncomms2368CrossRefGoogle Scholar
  5. 5.
    Buonomano, D.V., Maass, W.: State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10(2), 113 (2009).  https://doi.org/10.1038/nrn2558CrossRefGoogle Scholar
  6. 6.
    Dranias, M.R., Ju, H., Rajaram, E., VanDongen, A.M.: Short-term memory in networks of dissociated cortical neurons. J. Neurosci. 33(5), 1940–1953 (2013).  https://doi.org/10.1523/JNEUROSCI.2718-12.2013CrossRefGoogle Scholar
  7. 7.
    Durstewitz, D., Deco, G.: Computational significance of transient dynamics in cortical networks. Eur. J. Neurosci. 27(1), 217–227 (2008).  https://doi.org/10.1111/j.1460-9568.2007.05976.xCrossRefGoogle Scholar
  8. 8.
    Fernando, C., Sojakka, S.: Pattern recognition in a bucket. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS, vol. 2801, pp. 588–597. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39432-7_63CrossRefGoogle Scholar
  9. 9.
    Goel, A., Buonomano, D.V.: Timing as an intrinsic property of neural networks: evidence from in vivo and in vitro experiments. Philos. Trans. R. Soc. B: Biol. Sci. 369(1637), 20120460 (2014).  https://doi.org/10.1098/rstb.2012.0460CrossRefGoogle Scholar
  10. 10.
    Hales, C.M., Rolston, J.D., Potter, S.M.: How to culture, record and stimulate neuronal networks on micro-electrode arrays (meas). JoVE (J. Vis. Exp.) (39), e2056 (2010).  https://doi.org/10.3791/2056
  11. 11.
    Jaeger, H.: Identification of behaviors in an agent’s phase space. Citeseer (1995)Google Scholar
  12. 12.
    Jaeger, H.: Short term memory in echo state networks, vol. 5. GMD-Forschungszentrum Informationstechnik (2001)Google Scholar
  13. 13.
    Jaeger, H.: Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, vol. 5. GMD-Forschungszentrum Informationstechnik Bonn (2002)Google Scholar
  14. 14.
    Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004).  https://doi.org/10.1126/science.1091277CrossRefGoogle Scholar
  15. 15.
    Jimbo, Y., Kawana, A., Parodi, P., Torre, V.: The dynamics of a neuronal culture of dissociated cortical neurons of neonatal rats. Biol. Cybern. 83(1), 1–20 (2000).  https://doi.org/10.1007/PL00007970CrossRefGoogle Scholar
  16. 16.
    Johnson, H.A., Goel, A., Buonomano, D.V.: Neural dynamics of in vitro cortical networks reflects experienced temporal patterns. Nat. Neurosci. 13(8), 917 (2010).  https://doi.org/10.1038/nn.2579CrossRefGoogle Scholar
  17. 17.
    Laje, R., Buonomano, D.V.: Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat. Neurosci. 16(7), 925 (2013).  https://doi.org/10.1038/nn.3405CrossRefGoogle Scholar
  18. 18.
    Lu, Z., Hunt, B.R., Ott, E.: Attractor reconstruction by machine learning. Chaos: Interdisc. J. Nonlinear Sci. 28(6), 061104 (2018).  https://doi.org/10.1063/1.5039508MathSciNetCrossRefGoogle Scholar
  19. 19.
    Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002).  https://doi.org/10.1162/089976602760407955CrossRefzbMATHGoogle Scholar
  20. 20.
    Manjunath, G., Jaeger, H.: Echo state property linked to an input: exploring a fundamental characteristic of recurrent neural networks. Neural Comput. 25(3), 671–696 (2013).  https://doi.org/10.1162/NECO_a_00411MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nakajima, K.: Muscular-hydrostat computers: physical reservoir computing for octopus-inspired soft robots. In: Shigeno, S., Murakami, Y., Nomura, T. (eds.) Brain Evolution by Design. DCA, pp. 403–414. Springer, Tokyo (2017).  https://doi.org/10.1007/978-4-431-56469-0_18CrossRefGoogle Scholar
  22. 22.
    Nakajima, K., Hauser, H., Kang, R., Guglielmino, E., Caldwell, D.G., Pfeifer, R.: Computing with a muscular-hydrostat system. In: 2013 IEEE International Conference on Robotics and Automation, pp. 1504–1511. IEEE (2013).  https://doi.org/10.1109/ICRA.2013.6630770
  23. 23.
    Nakajima, K., Hauser, H., Kang, R., Guglielmino, E., Caldwell, D.G., Pfeifer, R.: A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front. Comput. Neurosci. 7, 91 (2013).  https://doi.org/10.3389/fncom.2013.00091CrossRefGoogle Scholar
  24. 24.
    Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Information processing via physical soft body. Sci. Rep. 5, 10487 (2015).  https://doi.org/10.1038/srep10487CrossRefGoogle Scholar
  25. 25.
    Nakajima, K., Hauser, H., Li, T., Pfeifer, R.: Exploiting the dynamics of soft materials for machine learning. Soft Robot. 5(3), 339–347 (2018).  https://doi.org/10.1089/soro.2017.0075CrossRefGoogle Scholar
  26. 26.
    Nakajima, K., Li, T., Hauser, H., Pfeifer, R.: Exploiting short-term memory in soft body dynamics as a computational resource. J. R. Soc. Interface 11(100), 20140437 (2014).  https://doi.org/10.1098/rsif.2014.0437CrossRefGoogle Scholar
  27. 27.
    Nettleton, J.S., Spain, W.J.: Linear to supralinear summation of AMPA-mediated EPSPs in neocortical pyramidal neurons. J. Neurophysiol. 83(6), 3310–3322 (2000)CrossRefGoogle Scholar
  28. 28.
    Potter, S.M., DeMarse, T.B.: A new approach to neural cell culture for long-term studies. J. Neurosci. Methods 110(1–2), 17–24 (2001).  https://doi.org/10.1016/S0165-0270(01)00412-5CrossRefGoogle Scholar
  29. 29.
    Quiroga, R.Q., Nadasdy, Z., Ben-Shaul, Y.: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 16(8), 1661–1687 (2004).  https://doi.org/10.1162/089976604774201631CrossRefzbMATHGoogle Scholar
  30. 30.
    Rabinovich, M., Huerta, R., Laurent, G.: Transient dynamics for neural processing. Science 321(5885), 48–50 (2008).  https://doi.org/10.1126/science.1155564CrossRefGoogle Scholar
  31. 31.
    Verstraeten, D., Schrauwen, B., d’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Netw. 20(3), 391–403 (2007).  https://doi.org/10.1016/j.neunet.2007.04.003CrossRefzbMATHGoogle Scholar
  32. 32.
    Victor, J.D., Purpura, K.P.: Nature and precision of temporal coding in visual cortex: a metric-space analysis. J. Neurophysiol. 76(2), 1310–1326 (1996).  https://doi.org/10.1152/jn.1996.76.2.1310CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Advanced Interdisciplinary Studies, Graduate School of EngineeringThe University of TokyoMeguro-kuJapan
  2. 2.Graduate School of Information Science and TechnologyThe University of TokyoBunkyo-kuJapan

Personalised recommendations