Quasi-Passive Lower and Upper Extremity Robotic Exoskeleton for Strengthening Human Locomotion

  • Aryaman Arora
  • John R. McIntyre
Part of the International Marketing and Management Research book series (INMAMAR)


Most of the robotic exoskeletons available today are either lower extremity or upper extremity devices targeting individual orthotic (elbow, knee, and ankle) joints. However, there are a few which target both lower and upper extremities. This chapter aims to propose a design for a wearable quasi-passive lower and upper extremity robotic exoskeleton (QLUE-REX) system, targeting disabled users and aged seniors. This exoskeleton system aims to improve mobility, assist walking, improve and enhance muscle strength, and help people with leg/arm disabilities. QLUE-REX combines elbow, knee, and ankle joints with options to synchronize individual joints’ movements to achieve the following: (1) assist in lifting loads of 30–40 kilograms, (2) assist in walking, (3) easy and flexible to wear without any discomfort, and (4) be able to learn and adapt along with storing time-stamped sensor data on its exoskeleton storage media for predicting/correcting users’ movements and share data with health professionals. The research’s main objective is to conceptualize a design for QLUE-REX system. QLUE-REX will be a feasible modular-type wearable system that incorporates orthotic elbow, knee, and ankle joints effectively in either synchronous or asynchronous modes depending on the users’ needs. It will utilize human-walking analysis, data sensing and estimation technology, and measurement of the electromyography signals of user’s muscles, exploiting biomechanical principles of human-machine interface.


Quasi-passive lower and upper extremity robotic exoskeleton (QLUE-REX) system Mobility dysfunction Biomechanics Robotics Actuators Exoskeleton operating system 


  1. Almekkawy, M., Chen, J., Ellis, M., Haemmerich, D., Holmes, D., Linte, C., … Zderic, V. (2019). Therapeutic systems and technologies: State-of-the-art, applications, opportunities and challenges. IEEE Reviews in Biomedical Engineering.Google Scholar
  2. Arnold, C. M., & Faulkner, R. A. (2002). The history of falls and the association of the timed up and go test to falls and near-falls in older adults with hip osteoarthritis. Journal of the American Geriatrics Society, 50, 671–678.CrossRefGoogle Scholar
  3. Bacsu, J. R., Jeffery, B., Johnson, S., Martz, D., Novik, N., & Abonyi, S. (2012). Healthy aging in place: Supporting rural seniors’ health needs. Online Journal of Rural Nursing and Health Care, 12(2), 77–87.Google Scholar
  4. Brown, M. (2012). xOS 2 Exoskeleton [PDF document]. Retrieved May 15, 2019, from
  5. Chu, A., Kazerooni, H., & Zoss, A. (2005). On the biomimetic design of the Berkeley lower extremity exoskeleton (BLEEX). Proceedings of Robotics and Automation, ICRA 2005, Proceedings of the 2005 IEEE International Conference on Intelligent Robots and Systems (pp. 4345–4352).
  6. Cozen, J. A. (1999). Robotic assistance of an active upper limb exercise in neurologically impaired patients. IEEE Transactions on Rehabilitation Engineering, 7(2), 254–256.CrossRefGoogle Scholar
  7. Cyberdyne. (2015). What’s HAL®? Retrieved May 15, 2019, from
  8. Dollar, A. M., & Herr, H. (2008). Design of a quasi-passive knee exoskeleton to assist running. Proceedings from Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on (pp. 747–754). Nice, France: IEEE/RSJ.
  9. European Space Agency. (2014). The ESA Exoskeleton. Retrieved May 15, 2019, from
  10. Ferguson, P. W., Dimapasoc, B., Shen, Y., & Rosen, J. (2018, October). Design of a hand exoskeleton for use with upper limb exoskeletons. InInternational symposium on wearable robotics (pp. 276–280). Cham: Springer.Google Scholar
  11. Hesse, S., Schmidt, H., Werner, C., & Bardeleben, A. (2003). Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current Opinion in Neurology, 16(6), 705–710.CrossRefGoogle Scholar
  12. Hogan, N., Aisen, M. L., & Volpe, B. T. (1998). Robot-aided neurorehabilitation.Rehabilitation Engineering, IEEE Transactions on, 6(1), 75–87. Scholar
  13. Honda. (2009). Honda – Walk Assist. Retrieved May 15, 2019, from
  14. Iezzoni, L. I. (2003). When walking fails. Berkeley, CA: University of California Press.Google Scholar
  15. Kilicarslan, A., Prasad, S., Grossman, R. G., & Contreras-Vidal, J. L. (2013, July). High accuracy decoding of user intentions using EEG to control a lower-body exoskeleton. In 2013 35th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 5606–5609). IEEE.Google Scholar
  16. Krebs, H., Ferraro, M., Buerger, S. P., Newberry, M. J., Makiyami, A., Sandmann, M., … Hogan, N. (2004). Rehabilitation robotics: Pilot trial of a spatial extension for MIT-Manus. Journal of NeuroEngineering and Rehabilitation, 1(5). Scholar
  17. Krucoff, M. O., Rahimpour, S., Slutzky, M. W., Edgerton, V. R., & Turner, D. A. (2016). Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation. Frontiers in Neuroscience, 10, 584.CrossRefGoogle Scholar
  18. Leveille, S. G., Bean, J., Bandeen-Roche, K., Jones, R., Hochberg, M., & Guralnik, J. M. (2002). Musculoskeletal pain and risk for falls in older disabled women living in the community. Journal of the American Geriatrics Society, 50(4), 671–678.CrossRefGoogle Scholar
  19. Lewis, C. L., & Ferris, D. P. (2011). Invariant hip moment patterns when walking with a robotic hip exoskeleton. Journal of Biomechanics, 44(5), 789–793.CrossRefGoogle Scholar
  20. Li, G., Fang, Q., Xu, T., Zhao, J., Cai, H., & Zhu, Y. (2019). Inverse kinematic analysis and trajectory planning of a modular upper limb rehabilitation exoskeleton. Technology and Health Care, (Preprint), 1–10.Google Scholar
  21. Lockheed Martin. (2015). HULC. Retrieved May 15, 2019, from
  22. Lum, P. S., Burgar, C. G., Van der Loos, M., Shor, P., Majmundar, M., & Yap, R. (2005). The MIME robotic system for upper-limb neuro-rehabilitation: Results from a clinical trial in subacute stroke. In Proceedings from ICCOR 9th International Conference on Rehabilitation Robotics, 2005 (pp. 511–514). Chicago, IL: IEEE. Scholar
  23. Morone, G., Paolucci, S., Cherubini, A., De Angelis, D., Venturiero, V., Coiro, P., & Iosa, M. (2017). Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatric Disease and Treatment, 13, 1303.CrossRefGoogle Scholar
  24. Nef, T., Guidali, M., & Riener, R. (2009). ARMin III–arm therapy exoskeleton with an ergonomic shoulder actuation. Applied Bionics and Biomechanics, 6(2), 127–142.CrossRefGoogle Scholar
  25. van Ninhuijs, B., van der Heide, L. A., Jansen, J. W., Gysen, B. L. J., van der Pijl, D. J., & Lomonova, E. A. (2013). Overview of actuated arm support systems and their applications. Actuators, 2(4), 86–110. Scholar
  26. Reinkensmeyer, D. J., Kahn, L. E., Averbuch, M., McKenna-Cole, A., Schmit, B. D., & Rymer, W. Z. (2000). Understanding and treating arm movement impairment after chronic brain injury: Progress with the ARM guide. Journal of Rehabilitation Research and Development, 37(6), 653–662. Retrieved May 15, 2019, from Scholar
  27. Rupal, B. S., Rafique, S., Singla, A., Singla, E., Isaksson, M., & Virk, G. S. (2017). Lower-limb exoskeletons: Research trends and regulatory guidelines in medical and non-medical applications. International Journal of Advanced Robotic Systems, 14(6).
  28. Sanchez, R. J., Wolbrecht, E., Smith, R., Liu, J., Rao, S., Cramer, S., … & Reinkensmeyer, D. J. (2005, June). A pneumatic robot for re-training arm movement after stroke: Rationale and mechanical design. In 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005 (pp. 500–504). IEEE.Google Scholar
  29. Shen, Y., Ma, J., Dobkin, B., & Rosen, J. (2018, July). Asymmetric dual arm approach for post stroke recovery of motor functions utilizing the EXO-UL8 exoskeleton system: A pilot study. In 2018 40th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1701–1707). IEEE.Google Scholar
  30. Silveira, A. T., Souza, M. A. D., Fernandes, B. L., & Nohama, P. (2018). From the past to the future of therapeutic orthoses for upper limbs rehabilitation. Research on Biomedical Engineering, 34(4), 368–380.CrossRefGoogle Scholar
  31. Singh, H., Unger, J., Zariffa, J., Pakosh, M., Jaglal, S., Craven, B. C., & Musselman, K. E. (2018). Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: A systematic scoping review. Disability and Rehabilitation: Assistive Technology, 13(7), 704–715.Google Scholar
  32. Stokes, J., & Lindsay, J. (1996). Major causes of death and hospitalization in Canadian seniors. Chronic Disease in Canada, 17, 63–73.Google Scholar
  33. Taylor, D. M. (2018). Americans with disabilities: 2014. Household Economic Studies. Retrieved July 28, 2019, from
  34. Yu, S. N., Lee, H. D., Lee, S. H., Kim, W. S., Han, J. S., & Han, C. S. (2012). Design of an under-actuated exoskeleton system for walking assist while load carrying. Advanced Robotics, 26(5–6), 561–580.CrossRefGoogle Scholar
  35. Zoss, A., Kazerooni, H., & Chu, A. (2005). On the mechanical design of the Berkeley Lower Extremity Exoskeleton (BLEEX). In Proceedings from Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on (pp. 3465–3472). Edmonton, AB: IEEE. Scholar
  36. Zaroug, A., Proud, J. K., Lai, D. T., Mudie, K., Billing, D., & Begg, R. (2019). Overview of Computational Intelligence (CI) techniques for powered exoskeletons. In Computational intelligence in sensor networks (pp. 353–383). Berlin, Heidelberg: Springer.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2020

Authors and Affiliations

  • Aryaman Arora
    • 1
  • John R. McIntyre
    • 2
  1. 1.School Without WallsWashington, DCUSA
  2. 2.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations