A C1 Incompatible Mode Element Formulation for Strain Gradient Elasticity

  • Rainer GlügeEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 120)


In the present article, a simple, yet reasonably well working 3rd order 3D tetrahedral incompatible mode finite element with C1 continuity is presented. It has been implemented into the finite element system Abaqus. To check its capabilities, it is used in elastostatic boundary value problems in conjunction with an elasticity model that includes a classical strain energy and a strain gradient energy contribution. With these examples, we discuss the regularizing effect of the strain gradient contribution on the singularities in classical elasticity in single force indentation tests and bending of an L-shaped sample with a sharp corner. We consider both, large strain gradient contributions and a mesh refinement. We further discuss the transition to the pseudorigid behavior as the strain gradient energy becomes large compared to the strain energy, which results in a material that can only undergo homogeneous deformations, also called pseudorigid. Finally, we propose an improvement of the element formulation, and compare its convergence behavior upon mesh refinement.


Continuum mechanics Finite element method C1 continuity Strain gradient elasticity Pseudo-rigid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was performed within the framework of the basic part of the State task for 2017 - 2019, project code 1.5265.2017 / BCh.


  1. Aptukov VN (2007) Model’ uprugo-povrezhdennoi ortotropnoi sredy [model of the elastic damaged orthotropic environment]. Vestnik Permskogo universiteta Seriia: Matematika Mekhanika Informatika 7(12):84–90Google Scholar
  2. Astaf’ev VI, Radaev YN, Stepanova LV (2001) Nelineinaia mekhanika razrusheniia [Nonlinear Mechanics of Damage]. Izdatel’stvo “Samarskii universitet”Google Scholar
  3. Busov VL (2007) Rasseianie ul’trazvukovykh voln na mikrotreshchinakh v fragmentirovannykh polikristallakh [ultrasonic wave scattering by microcracks in the fragmented polycrystals]. Akustichnii vestnik Acoustic Bulletin 10(3):19–24Google Scholar
  4. Frolenkova LY, Shorkin VS (2013) Metod vychisleniia poverkhnostnoi energii i energii adgezii uprugikh tel [method of calculating the surface and adhesion energies of elastic bodies]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta Mekhanika PNRPU Mechanics Bulletin 1:235–259Google Scholar
  5. Griffith AA (1920) The phenomena of rupture and flow in solids. Phil Trans Roy Soc London Ser A 221:163–198CrossRefGoogle Scholar
  6. Hild F, Forquin P, Denoual C, Brajer X (2005) Probalistic-deterministic transition involved in a fragmentation process of brittle materials: Application to high performance concrete. Latin American Journal of Solids and Structures 2(1):41–56Google Scholar
  7. Kachanov LM (1974) Osnovy mekhaniki razrusheniia [Fundamentals of Mechanics of Damage]. Moskva: NaukaGoogle Scholar
  8. Kashtanov AV, Petrov YV (2006) Energy approach to determination of the instantaneous damage level. Technical Physics The Russian Journal of Applied Physics 51(5):604–608CrossRefGoogle Scholar
  9. Nowacki W (1975) Teoriia uprugosti [Elasticity Theory]. Mir, MoskvaGoogle Scholar
  10. Panin VE, Egorushkin VE (2009) Physical mesomechanics and nonequilibrium thermodynamics as a methodological basis for nanomaterials science. Physical Mesomechanics 12(5):204–220CrossRefGoogle Scholar
  11. Petch NJ (1968) Metallographic aspects of fracture. In: Liebowitz H (ed) Fracture: An Advanced Treatise, Academic Press, New York, vol 1: Microscopic and Macroscopic Fundamentals, pp 376–420Google Scholar
  12. Rabotnov Y (1970) O razrushenii tverdykh tel [On the Damage of Solid Bodies]. Sudostroenie, LeningradGoogle Scholar
  13. Rybin VV (1986) Bol’shie plasticheskie deformatsii i razrushenie materialov [Large Plastic Deformations and Damage of Materials]. Moskva: MetallurgiiaGoogle Scholar
  14. Sarafanov GF, Pereverzentsev VN (2010) Zarozhdenie mikrotreshchin v fragmentirovannoi strukture [nucleation of microcracks in the fragmented structure]. Vestnik Nizhegorodskogo universiteta im N I Lobachevskogo 5(2):90–94Google Scholar
  15. Sedov LI (1972) A Course in Continuum Mechanics, vol 1-4. Wolters-Noordhoff Publ., GroningenGoogle Scholar
  16. Vitkovsky IV, Konev AN, Shorkin VS, Yakushina SI (2007) Theoretical estimation of discontinuity flaw of adhesive contacts between multilayer elements of the liquid metal blanket in a fusion reactor. Technical Physics The Russian Journal of Applied Physics 52(6):705–710CrossRefGoogle Scholar
  17. Vitkovsky IV, Frolenkova LY, Shorkin VS (2012) Adhesion-diffusion formation of a multilayer wall for the liquid metal flow channel of a fusion reactor blanket. Technical Physics The Russian Journal of Applied Physics 57(7):1013–1018CrossRefGoogle Scholar
  18. Volynskii AL, Iarysheva LM, Moiseeva SV, Bazhenov SM, Bakeev NF (2006) Novyi podkhod kotsenke mekhanicheskikh svoistv tverdykh tel ekstremal’no malykh i bol’shikh razmerov [new approach to an assessment of mechanical properties of solid bodies of extremely small and big sizes]. Rossiiskii khimicheskii zhurnal Zhurnal Rossiiskogo khimicheskogo obshchestva im DI Mendeleeva Russian Journal of General Chemistry 50(5):126–133Google Scholar
  19. Zhou ZG, Wang B (2006) Nonlocal theory solution of two collinear cracs in the functionally graded materials. International Journal of Solids and Structures 43(5):887–898CrossRefGoogle Scholar
  20. Zhu TT, Bushby AJ, Dunstan DJ (2008) Materials mechanical size effects: a review. Materials Technology 23(4):193–209CrossRefGoogle Scholar
  21. Zhurkov SN, Kuksenko VS, Petrov VA, Savel’ev VN, Sulgonov U (1977) O prognozirovanii razrusheniia gornykh porod [about forecasting of destruction of rocks]. Izvestiia AN SSSR Fizika Zemli Izvestiya - Academy of Sciences of the USSR Physics of the Solid Earth 6:11–18Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Otto-von-Guericke–University Magdeburg, Institute of MechanicsMagdeburgGermany

Personalised recommendations