Autism and Gut–Brain Axis: Role of Probiotics

  • Saravana Babu Chidambaram
  • Sunanda Tuladhar
  • Abid Bhat
  • Arehally Marappa Mahalakshmi
  • Bipul Ray
  • Musthafa Mohamed Essa
  • Muhammed Bishir
  • Srinivasa Rao Bolla
  • Nandakumar Dalavaikodihalli Nanjaiah
  • Gilles J. Guillemin
  • M. Walid Qoronfleh
Part of the Advances in Neurobiology book series (NEUROBIOL, volume 24)


Characterized by a wide range of behavioural, social and language problems, autism is a complex developmental disability that affects an individual’s capacity to communicate and interact with others. Although the real causes that lead to the development of autism are still unclear, the gastrointestinal tract has been found to play a major role in the development of autism. Alterations in macrobiotic compositions have been reported in autistic children. Irregularities in carbohydrate digestion and absorption could also explain some of the gastrointestinal problems reported in autistic patients, although their role in the neurological and behavioural problems remains uncertain. A relationship between improved gut health and decrease of symptoms in autism has been reported as well. Studies done to evaluate the gluten-free diets, casein-free diets, pre- and probiotic and multivitamin supplementation have shown promising results. Probiotics have been thought to alleviate the progression of autism and reduce cognitive and behavioural deficits.


Autism ASD Cognitive and behavioural deficits Gut–brain axis GI dysfunction Barrier pathway Microbiome Probiotics 


  1. 1.
    Sirisinha, S. (2016). The potential impact of gut microbiota on your health: Current status and future challenges. Asian Pacific Journal of Allergy and Immunology, 34(4), 249–264.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Thakur, A., Shakya, A., Husain, G., Emerald, M., & Kumar, V. (2014). Gut-microbiota and mental health: Current and future perspectives. Journal of Pharmacology and Clinical Toxicology, 2, 1–15.Google Scholar
  3. 3.
    Rhee, S. H., Pothoulakis, C., & Mayer, E. A. (2009, May). Principles and clinical implications of the brain-gut-enteric microbiota axis. Nature Reviews. Gastroenterology & Hepatology, 6(5), 306–314.CrossRefGoogle Scholar
  4. 4.
    Rizk, M. Z. (2019, May 18). Role of gut-brain axis in the aetiology of neurodevelopmental disorders with reference to autism. Journal Clinical Toxicology, S6, 005.Google Scholar
  5. 5.
    Li, Q., & Zhou, J.-M. (2016, June). The microbiota–gut–brain axis and its potential therapeutic role in autism spectrum disorder. Neuroscience, 324, 131–139.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Snoek, S. A., Verstege, M. I., Boeckxstaens, G. E., van den Wijngaard, R. M., & de Jonge, W. J. (2010, October). The enteric nervous system as a regulator of intestinal epithelial barrier function in health and disease. Expert Review of Gastroenterology & Hepatology, 4(5), 637–651.CrossRefGoogle Scholar
  7. 7.
    Collins, S. M., Surette, M., & Bercik, P. (2012, November). The interplay between the intestinal microbiota and the brain. Nature Reviews. Microbiology, 10(11), 735–742.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dinan, T. G., Quigley, E. M. M., Ahmed, S. M. M., Scully, P., O’Brien, S., O’Mahony, L., et al. (2006, February). Hypothalamic-pituitary-gut axis dysregulation in irritable bowel syndrome: Plasma cytokines as a potential biomarker? Gastroenterology, 130(2), 304–311.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Donaldson, G. P., Lee, S. M., & Mazmanian, S. K. (2016, January). Gut biogeography of the bacterial microbiota. Nature Reviews. Microbiology, 14(1), 20–32.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Falk, P. G., Hooper, L. V., Midtvedt, T., & Gordon, J. I. (1998, December). Creating and maintaining the gastrointestinal ecosystem: What we know and need to know from gnotobiology. Microbiology and Molecular Biology Reviews, 62(4), 1157–1170.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Round, J. L., & Mazmanian, S. K. (2009, May). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9(5), 313–323.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yang, Y., Tian, J., & Yang, B. (2018, February). Targeting gut microbiome: A novel and potential therapy for autism. Life Sciences, 194, 111–119.CrossRefGoogle Scholar
  13. 13.
    Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2011, September). Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Applied and Environmental Microbiology, 77(18), 6718–6721.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Adams, J. B., Johansen, L. J., Powell, L. D., Quig, D., & Rubin, R. A. (2011, March 16). Gastrointestinal flora and gastrointestinal status in children with autism—Comparisons to typical children and correlation with autism severity. BMC Gastroenterology, 11, 22.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Liu, F., Li, J., Wu, F., Zheng, H., Peng, Q., & Zhou, H. (2019, January 29). Altered composition and function of intestinal microbiota in autism spectrum disorders: A systematic review. Translational Psychiatry, 9(1), 43.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Song, Y., Liu, C., & Finegold, S. M. (2004, November). Real-time PCR quantitation of Clostridia in feces of autistic children. Applied and Environmental Microbiology, 70(11), 6459–6465.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010, July). Gut microbiota in health and disease. Physiological Reviews, 90(3), 859–904.CrossRefGoogle Scholar
  18. 18.
    Angelis, M. D., Francavilla, R., Piccolo, M., Giacomo, A. D., & Gobbetti, M. (2015, May 4). Autism and intestinal microbiota. Gut Microbes, 6(3), 207–213.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kang, D.-W., Ilhan, Z. E., Isern, N. G., Hoyt, D. W., Howsmon, D. P., Shaffer, M., et al. (2018, February 1). Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders. Anaerobe, 49, 121–131.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wang, L., Christophersen, C. T., Sorich, M. J., Gerber, J. P., Angley, M. T., & Conlon, M. A. (2013, November 4). Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Molecular Autism, 4(1), 42.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Navarro, F., Liu, Y., & Rhoads, J. M. (2016, December 14). Can probiotics benefit children with autism spectrum disorders? World Journal of Gastroenterology, 22(46), 10093–10102.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Eren, A. M., Sogin, M. L., Morrison, H. G., Vineis, J. H., Fisher, J. C., Newton, R. J., et al. (2015). A single genus in the gut microbiome reflects host preference and specificity. The ISME Journal, 9, 90–100.CrossRefGoogle Scholar
  23. 23.
    de Magistris, L., Familiari, V., Pascotto, A., Sapone, A., Frolli, A., Iardino, P., et al. (2010, October). Alterations of the intestinal barrier in patients with autism and in their first-degree relatives. Journal of Pediatric Gastroenterology and Nutrition, 51(4), 418–424.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Fiorentino, M., Sapone, A., Senger, S., Camhi, S. S., Kadzielski, S. M., Buie, T. M., et al. (2016). Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Molecular Autism, 7, 49.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ming, X., Stein, T. P., Barnes, V., Rhodes, N., & Guo, L. (2012, December 7). Metabolic perturbance in autism spectrum disorders: A metabolomics study. Journal of Proteome Research, 11(12), 5856–5862.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Esnafoglu, E., Cırrık, S., Ayyıldız, S. N., Erdil, A., Ertürk, E. Y., Daglı, A., et al. (2017). Increased serum zonulin levels as an intestinal permeability marker in autistic subjects. The Journal of Pediatrics, 188, 240–244.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Haba, R., Shintani, N., Onaka, Y., Wang, H., Takenaga, R., Hayata, A., et al. (2012, March 17). Lipopolysaccharide affects exploratory behaviors toward novel objects by impairing cognition and/or motivation in mice: Possible role of activation of the central amygdala. Behavioural Brain Research, 228(2), 423–431.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Emanuele, E., Orsi, P., Boso, M., Broglia, D., Brondino, N., Barale, F., et al. (2010, March). Low-grade endotoxemia in patients with severe autism. Neuroscience Letters, 471(3), 162–165.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kraneveld, A. D., Szklany, K., de Theije, C. G. M., & Garssen, J. (2016). Gut-to-brain axis in autism spectrum disorders. International Review of Neurobiology, 131, 263–287.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Costedio, M. M., Hyman, N., & Mawe, G. M. (2007, March). Serotonin and its role in colonic function and in gastrointestinal disorders. Diseases of the Colon and Rectum, 50(3), 376–388.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    McDougle, C. J., Naylor, S. T., Cohen, D. J., Aghajanian, G. K., Heninger, G. R., & Price, L. H. (1996, November). Effects of tryptophan depletion in drug-free adults with autistic disorder. Archives of General Psychiatry, 53(11), 993–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    de Theije, C. G. M., Wu, J., da Silva, S. L., Kamphuis, P. J., Garssen, J., Korte, S. M., et al. (2011, September). Pathways underlying the gut-to-brain connection in autism as future targets for disease management. European Journal of Pharmacology, 668(Suppl 1), S70–S80.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    de Theije, C. G. M., Wopereis, H., Ramadan, M., van Eijndthoven, T., Lambert, J., Knol, J., et al. (2014, March). Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain, Behavior, and Immunity, 37, 197–206.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Maynard, C. L., Elson, C. O., Hatton, R. D., & Weaver, C. T. (2012, September 13). Reciprocal interactions of the intestinal microbiota and immune system. Nature, 489(7415), 231–241.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Petra, A. I., Panagiotidou, S., Hatziagelaki, E., Stewart, J. M., Conti, P., & Theoharides, T. C. (2015, May 1). Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clinical Therapeutics, 37(5), 984–995.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chandler, S., Carcani-Rathwell, I., Charman, T., Pickles, A., Loucas, T., Meldrum, D., et al. (2013, December). Parent-reported gastro-intestinal symptoms in children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 43(12), 2737–2747.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Molloy, C. A., Morrow, A. L., Meinzen-Derr, J., Schleifer, K., Dienger, K., Manning-Courtney, P., et al. (2006, March). Elevated cytokine levels in children with autism spectrum disorder. Journal of Neuroimmunology, 172(1–2), 198–205.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ashwood, P., & Wakefield, A. J. (2006, April). Immune activation of peripheral blood and mucosal CD3+ lymphocyte cytokine profiles in children with autism and gastrointestinal symptoms. Journal of Neuroimmunology, 173(1–2), 126–134.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Park, Y. D. (2003, June 1). The effects of vagus nerve stimulation therapy on patients with intractable seizures and either Landau–Kleffner syndrome or autism. Epilepsy & Behavior, 4(3), 286–290.CrossRefGoogle Scholar
  40. 40.
    Berney, T. P. (2000, January). Autism – An evolving concept. The British Journal of Psychiatry, 176(1), 20–25.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Lyte, M. (2014, December). The effect of stress on microbial growth. Animal Health Research Reviews, 15(2), 172–174.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Carabotti, M., Scirocco, A., Maselli, M. A., & Severi, C. (2015). The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Annals of Gastroenterology, 28, 203–209.PubMedPubMedCentralGoogle Scholar
  43. 43.
    MacFabe, D. F. (2015, May 29). Enteric short-chain fatty acids: Microbial messengers of metabolism, mitochondria, and mind: Implications in autism spectrum disorders. Microbial Ecology in Health & Disease, 26, 28177.CrossRefGoogle Scholar
  44. 44.
    Begum, P., Madhavi, G., Rajagopal, S., Viswanath, B., Razak, M., & Venkataratnamma, V. (2017, January 1). Probiotics as functional foods: Potential effects on human health and its impact on neurological diseases. International Journal of Nutrition, Pharmacology, Neurological Diseases, 7, 23.CrossRefGoogle Scholar
  45. 45.
    Pandey Kavita, R., Naik Suresh, R., & Vakil Babu, V. (2015, December). Probiotics, prebiotics and synbiotics – A review. Journal of Food Science and Technology, 52(12), 7577–7587.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Slattery, J., MacFabe, D. F., & Frye, R. E. (2016). The significance of the enteric microbiome on the development of childhood disease: A review of prebiotic and probiotic therapies in disorders of childhood. Clinical Medicine Insights. Pediatrics, 10, 91–107.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Poornachandra Rao, K., & Sreenivasa, M. Y. (2017). Probiotic Lactobacillus strains. The future biological missiles to treat autism spectrum disorder: A short communication. Current Nutrition & Food Science, 13(1), 3–5. Scholar
  48. 48.
    Sánchez, B. R., Delgado, S. A., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition & Food Research, 61(1).
  49. 49.
    Kołożyn-Krajewska, D., & Dolatowski, Z. J. (2012, December 1). Probiotic meat products and human nutrition. Process Biochemistry, 47(12), 1761–1772.CrossRefGoogle Scholar
  50. 50.
    Zhou, J. S., Pillidge, C. J., Gopal, P. K., & Gill, H. S. (2005, February 1). Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains. International Journal of Food Microbiology, 98(2), 211–217.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Korbekandi, H., Mortazavian, A., & Iravani, S. (2011). Technology and stability of probiotic in fermented milks containing probiotics and prebiotics. Probiotic and Prebiotic Foods: Technology, Stability and Benefits to Human Health. Nova Science Publishers, Inc. USAGoogle Scholar
  52. 52.
    Mohammadi, R., Mortazavian, A. M., Khosrokhavar, R., & da Cruz, A. G. (2011, September 1). Probiotic ice cream: Viability of probiotic bacteria and sensory properties. Annales de Microbiologie, 61(3), 411–424.CrossRefGoogle Scholar
  53. 53.
    Hsiao, E. Y., McBride, S. W., Hsien, S., Sharon, G., Hyde, E. R., McCue, T., et al. (2013, December 19). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155(7), 1451–1463.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Improvements in Gastrointestinal Symptoms among Children with Autism Spectrum Disorder Receiving the Delpro® Probiotic and Immunomodulator Formulation [Internet]. (2019, June 12). Retrieved from
  55. 55.
    Parracho, H. M. R. T., Gibson, G. R., Knott, F., Bosscher, D., Kleerebezem, M., & McCartney, A. L. (2010, May). A double-blind, placebo-controlled, crossover-designed probiotic feeding study in children diagnosed with autistic spectrum disorders. International Journal of Probiotics and Prebiotics, 5, 69–74.Google Scholar
  56. 56.
    Doenyas, C. (2018). Gut microbiota, inflammation, and probiotics on neural development in autism spectrum disorder. Neuroscience, 15(374), 271–286.CrossRefGoogle Scholar
  57. 57.
    Kałużna-Czaplińska, J., & Błaszczyk, S. (2012, February). The level of arabinitol in autistic children after probiotic therapy. Nutrition, 28(2), 124–126.CrossRefGoogle Scholar
  58. 58.
    Sandler, R. H., Finegold, S. M., Bolte, E. R., Buchanan, C. P., Maxwell, A. P., Väisänen, M. L., et al. (2000, July). Short-term benefit from oral vancomycin treatment of regressive-onset autism. Journal of Child Neurology, 15(7), 429–435.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Romeo, M. G., Romeo, D. M., Trovato, L., Oliveri, S., Palermo, F., Cota, F., et al. (2011, January). Role of probiotics in the prevention of the enteric colonization by Candida in preterm newborns: Incidence of late-onset sepsis and neurological outcome. Journal of Perinatology, 31(1), 63–69.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Saravana Babu Chidambaram
    • 1
    • 2
  • Sunanda Tuladhar
    • 1
    • 2
  • Abid Bhat
    • 1
    • 2
  • Arehally Marappa Mahalakshmi
    • 1
  • Bipul Ray
    • 1
    • 2
  • Musthafa Mohamed Essa
    • 3
    • 4
  • Muhammed Bishir
    • 1
  • Srinivasa Rao Bolla
    • 5
  • Nandakumar Dalavaikodihalli Nanjaiah
    • 6
  • Gilles J. Guillemin
    • 7
  • M. Walid Qoronfleh
    • 8
  1. 1.Department of PharmacologyJSS College of Pharmacy, JSS Academy of Higher Education & ResearchMysuruIndia
  2. 2.Central Animal FacilityJSS Academy of Higher Education & ResearchMysuruIndia
  3. 3.Department of Food Science and NutritionCAMS, Sultan Qaboos UniversityMuscatOman
  4. 4.Ageing and Dementia Research Group, Sultan Qaboos UniversityMuscatOman
  5. 5.Department of AnatomyCollege of Medicine, Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  6. 6.Department of NeurochemistryNational Institute of Mental Health and Neurosciences (NIMHANS)BengaluruIndia
  7. 7.Department of Biomedical Sciences, Faculty of Medicine and Health SciencesMacquarie UniversitySydneyAustralia
  8. 8.Research & Policy DepartmentWorld Innovation Summit for Health (WISH), Qatar FoundationDohaQatar

Personalised recommendations