Advertisement

Solar Wind Turbulence

  • Victor Montagud-CampsEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Thanks to the deployment of satellite probes in the heliosphere since the 90s (Ulysses, Helios, ACE, Wind...), solar wind is one of the few examples of astrophysical plasmas in which in-situ measurements can be made. Since the launch of these probes, it has been possible to recover data from solar wind plasma using several types of instruments. From these in-situ measurements, it has been possible to study several properties of solar wind turbulence, such as the energy spectrum of magnetic fluctuations, turbulent anisotropy or turbulent heating. We will describe all these properties in the present chapter.

References

  1. 1.
    Alexandrova O, Bale S, Lacombe C (2013) Comment on “Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale”. Phys Rev Lett 111(14):149001–1Google Scholar
  2. 2.
    Alexandrova O, Saur J, Lacombe C, Mangeney A, Mitchell JJ, Schwartz SJ, Robert P (2009) Universality of solar wind turbulent spectrum from MHD to electron scales. J Geophys Res 1–4Google Scholar
  3. 3.
    Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53(1):197–214ADSCrossRefGoogle Scholar
  4. 4.
    Arya S, Freeman JW (1991) Estimates of solar wind velocity gradients between 0.3 and 1 AU based on velocity probability distributions from HELIOS 1 at perihelion and aphelion. J Geophys Res 96(A8):14183–14187Google Scholar
  5. 5.
    Banerjee S, Galtier S (2013) Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence. Phys Rev E (Stat Phys) 87(1):16Google Scholar
  6. 6.
    Bavassano B, Dobrowolny M, Mariani F, Ness NF (1982) Radial evolution of power spectra of interplanetary Alfvenic turbulence. J Geophys Res 87(A5):3617–3622ADSCrossRefGoogle Scholar
  7. 7.
    Bieber J, Wanner W, Matthaeus WH (1996) Dominant two-dimensional solar wind turbulence with implications for cosmic ray transport. J Geophys Res 101(A2):2511–2522ADSCrossRefGoogle Scholar
  8. 8.
    Breech B, Matthaeus WH, Cranmer SR, Kasper JC, Oughton S (2009) Electron and proton heating by solar wind turbulence. J Geophys Res (Space Phys) 114:A09103.  https://doi.org/10.1029/2009JA014354
  9. 9.
    Bruno R, Carbone V (2005) The solar wind as a turbulence laboratory. Living Rev Sol Phys 2(1):4ADSGoogle Scholar
  10. 10.
    Burlaga LF, Ogilvie KW (1973) Solar wind temperature and speed. J Geophys Res 78:2028.  https://doi.org/10.1029/JA078i013p02028
  11. 11.
    Carbone V, Marino R, Sorriso-Valvo L, Noullez A, Bruno R (2009) Scaling laws of turbulence and heating of fast solar wind: the role of density fluctuations. Phys Rev Lett 103(6):4CrossRefGoogle Scholar
  12. 12.
    Chen C, Wicks RT, Horbury TS, Schekochihin AA (2010) Interpreting power anisotropy measurements in plasma turbulence. Astrophys J 711(2):L79–L83Google Scholar
  13. 13.
    Chen C, Mallet A, Yousef TA, Schekochihin AA, Horbury TS (2011) Anisotropy of Alfvénic turbulence in the solar wind and numerical simulations. Mon Not R Astron Soc: Lett 415(4):3219–3226ADSCrossRefGoogle Scholar
  14. 14.
    Chen C, Bale S, Salem CS, Maruca BA (2013) Residual energy spectrum of solar wind turbulence. Astrophys J 770(2):125.  https://doi.org/10.1088/0004-637X/770/2/125
  15. 15.
    Cranmer SR, Matthaeus WH, Breech BA, Kasper JC (2009) Empirical constraints on proton and electron heating in the fast solar wind. ApJ 702:1604–1614.  https://doi.org/10.1088/0004-637X/702/2/1604
  16. 16.
    Dasso S, Milano LJ, Matthaeus WH, Smith CW (2005) Anisotropy in fast and slow solar wind fluctuations. Astrophys J 635(2):L181–L184.  https://doi.org/10.1086/499559
  17. 17.
    Grappin R, Velli M, Mangeney A (1991) ‘Alfvenic’ versus ‘standard’ turbulence in the solar wind. Ann Geophys 9:416–426ADSGoogle Scholar
  18. 18.
    Grappin R, Mangeney A, Marsch E (1990) On the origin of solar wind MHD turbulence - HELIOS data revisited. J Geophys Res 95:8197–8209.  https://doi.org/10.1029/JA095iA06p08197
  19. 19.
    Hadid LZ, Sahraoui F, Galtier S (2017) Energy cascade rate in compressible fast and slow solar wind turbulence. Astrophys J 838(1):9ADSCrossRefGoogle Scholar
  20. 20.
    Hellinger P, Travnicek P, Štverák Š, Matteini L, Velli M (2013) Proton thermal energetics in the solar wind: Helios reloaded. J Geophys Res: Space Phys 118(4):1351–1365ADSCrossRefGoogle Scholar
  21. 21.
    Hellinger P, Matteini L, Štverák Š, Travnicek P, Marsch E (2011) Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J Geophys Res 116(A9).  https://doi.org/10.1029/2011JA016674
  22. 22.
    Howes G (2010) A prescription for the turbulent heating of astrophysical plasmas. Mon Not R Astron Soc: Lett 409(1):L104–L108ADSCrossRefGoogle Scholar
  23. 23.
    Howes G, Klein KG, TenBarge J (2014) Validity of the Taylor hypothesis for linear kinetic waves in the weakly collisional solar wind. Astrophys J 789(2):106–109ADSCrossRefGoogle Scholar
  24. 24.
    Isenberg PA, Smith CW, Matthaeus WH (2003) Turbulent heating of the distant solar wind by interstellar pickup protons. ApJ 592:564–573.  https://doi.org/10.1086/375584
  25. 25.
    Kiyani K, Osman K, Chapman S (2015) Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Philos Trans R Soc A: Math Phys Eng Sci 373(2041):20140155–20140155ADSCrossRefGoogle Scholar
  26. 26.
    Lamarche LJ, Vasquez BJ, Smith CW (2014) Proton temperature change with heliocentric distance from 0.3 to 1 AU according to relative temperatures. J Geophys Res: Space Phys 119(5):3267–3280Google Scholar
  27. 27.
    Leamon RJ, Smith CW, Ness NF, Matthaeus WH, Wong HK (1998) Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. J Geophys Res 103(A3):4775–4787ADSCrossRefGoogle Scholar
  28. 28.
    Marino R, Sorriso-Valvo L, Carbone V, Noullez A, Bruno R, Bavassano B (2008) Heating the solar wind by a magnetohydrodynamic turbulent energy cascade. ApJ 677:L71.  https://doi.org/10.1086/587957
  29. 29.
    Marsch E, Mühlhäuser KH, Schwenn R, Rosenbauer H, Pilipp W, Neubauer FM (1982) Solar wind protons: three-dimensional velocity distributions and derived plasma parameters measured between 0.3 and 1 AU. J Geophys Res 87(A1):52–72.  https://doi.org/10.1029/JA087iA01p00052
  30. 30.
    Marsch E, Tu CY (1990) On the radial evolution of MHD turbulence in the inner heliosphere. J Geophys Res 95:8211–8229.  https://doi.org/10.1029/JA095iA06p08211
  31. 31.
    Maruca BA, Bale SD, Sorriso-Valvo L, Kasper JC, Stevens ML (2013) Collisional thermalization of hydrogen and helium in solar-wind plasma. Phys Rev Lett 111(24):241101.  https://doi.org/10.1103/PhysRevLett.111.241101
  32. 32.
    Matthaeus WH, Goldstein ML, Roberts DA (1990) Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind. J Geophys Res 95(A12):20673–20683.  https://doi.org/10.1029/JA095iA12p20673
  33. 33.
    Matthaeus WH, Servidio S, Dmitruk P, Carbone V, Oughton S, Wan M, Osman K (2012) Local anisotropy, higher order statistics, and turbulence spectra. Astrophys J 750(2):103ADSCrossRefGoogle Scholar
  34. 34.
    Miyake W, Mukai T, Terasawa T, Hirao K (1988) Stream interaction as a heat source in the solar wind. Sol Phys 117(1):171–178.  https://doi.org/10.1007/BF00148580
  35. 35.
    Narita Y, Glassmeier KH, Sahraoui F, Goldstein ML (2010) Wave-vector dependence of magnetic-turbulence spectra in the solar wind. Phys Rev Lett 104(17):299CrossRefGoogle Scholar
  36. 36.
    Narita Y, Glassmeier KH, Goldstein ML, Motschmann U, Sahraoui F (2011) Three-dimensional spatial structures of solar wind turbulence from 10 000-km to 100-km scales. Ann Geophys 29(10):1731–1738ADSCrossRefGoogle Scholar
  37. 37.
    Neugebauer M (1981) Observations of solar-wind helium. Fundam Cosm Phys 7:131–199ADSGoogle Scholar
  38. 38.
    Ng CS, Bhattacharjee A, Munsi D, Isenberg PA, Smith CW (2010) Kolmogorov versus Iroshnikov-Kraichnan spectra: consequences for ion heating in the solar wind. J Geophys Res (Space Phys) 115:A02101.  https://doi.org/10.1029/2009JA014377
  39. 39.
    Pinçon JL, Lefeuvre F (1991) Local characterization of homogeneous turbulence in a space plasma from simultaneous measurements of field components at several points in space. J Geophys Res 1789–1802Google Scholar
  40. 40.
    Politano H, Pouquet AG (1998) Dynamical length scales for turbulent magnetized flows. Geophys Res Lett 25(3):273–276ADSCrossRefGoogle Scholar
  41. 41.
    Richardson IG (2018) Solar wind stream interaction regions throughout the heliosphere. Living Rev Sol Phys 15:1.  https://doi.org/10.1007/s41116-017-0011-z
  42. 42.
    Richardson JD, Paularena KI, Lazarus AJ, Belcher JW (1995) Radial evolution of the solar wind from IMP 8 to Voyager 2. Geophys Res Lett 22:325–328.  https://doi.org/10.1029/94GL03273
  43. 43.
    Roberts OW, Narita Y, Escoubet CP (2017) Direct measurement of anisotropic and asymmetric wave vector spectrum in ion-scale solar wind turbulence. Astrophys J Lett 851(1):L11ADSCrossRefGoogle Scholar
  44. 44.
    Roberts OW, Narita Y, Escoubet CP (2018) Three-dimensional density and compressible magnetic structure in solar wind turbulence. Ann Geophys 36(2):527–539ADSCrossRefGoogle Scholar
  45. 45.
    Sahraoui F, Goldstein ML, Robert P, Khotyaintsev Y (2009) Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale. Phys Rev Lett 102(23):1207CrossRefGoogle Scholar
  46. 46.
    Sahraoui F, Goldstein ML, Belmont G, Canu P, Rezeau L (2010) Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Phys Rev Lett 105(13):131101ADSCrossRefGoogle Scholar
  47. 47.
    Sahraoui F, Robert P, Goldstein ML, Khotyaintsev Y (2013) Sahraoui et al. reply. Phys Rev Lett 111(14):149001Google Scholar
  48. 48.
    Saur J, Bieber J (1999) Geometry of low-frequency solar wind magnetic turbulence: evidence for radially aligned Alfvénic fluctuations. J Geophys Res 104(A5):9975–9988Google Scholar
  49. 49.
    Schwenn R, Mohlhauser KH, Marsch E, Rosenbauer H (1981) Two states of the solar wind at the time of solar activity minimum - part two - radial gradients of plasma parameters in fast and slow streams. In: Rosenbauer H (ed) Solar wind, vol 4, p 126Google Scholar
  50. 50.
    Scudder JD (2015) Radial variation of the solar wind proton temperature: heat flow or addition? ApJ 809:126.  https://doi.org/10.1088/0004-637X/809/2/126
  51. 51.
    Stawarz JE, Smith CW, Vasquez BJ, Forman M, MacBride BT (2009) The turbulent cascade and proton heating in the solar wind at 1 AU. Astrophys J 697(2):1119–1127.  https://doi.org/10.1088/0004-637X/697/2/1119
  52. 52.
    Štverák Š, Trávníček PM, Hellinger P (2015) Electron energetics in the expanding solar wind via Helios observations. J Geophys Res (Space Phys) 120:8177–8193.  https://doi.org/10.1002/2015JA021368
  53. 53.
    Totten TL, Freeman JW, Arya S (1995) An empirical determination of the polytropic index for the free-streaming solar wind using Helios 1 data. J Geophys Res 100(A1):13–17ADSCrossRefGoogle Scholar
  54. 54.
    Tracy PJ, Kasper JC, Zurbuchen TH, Raines JM, Shearer P, Gilbert J (2015) Thermalization of heavy ions in the solar wind. ApJ 812:170.  https://doi.org/10.1088/0004-637X/812/2/170
  55. 55.
    Vasquez BJ, Smith CW, Hamilton K, MacBride BT, Leamon RJ (2007) Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. J Geophys Res 112(A7).  https://doi.org/10.1029/2007JA012305
  56. 56.
    Verdini A, Grappin R, Pinto RF, Velli M (2012) On the origin of the 1/f spectrum in the solar wind magnetic field. Astrophys J 750(2):L33–5Google Scholar
  57. 57.
    Weygand JM, Matthaeus WH, Dasso, S, Kivelson MG (2011) Correlation and Taylor scale variability in the interplanetary magnetic field fluctuations as a function of solar wind speed. J Geophys Res 116(A8)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Surface and Plasma ScienceCharles UniversityPragueCzech Republic

Personalised recommendations