• Victor Montagud-CampsEmail author
Part of the Springer Theses book series (Springer Theses)


A qualitative picture of turbulence in every day life is given by random patterns (usually eddies) forming in the wake of a solid obstacle facing a flow, or air turbulence forming for instance above a tea cup. Turbulence can be found in a variety of contexts, such as geophysical flows, gravitational waves, interstellar medium, or the Solar Wind. Here, we shall concentrate on fluid turbulence, with fluids that can be described either by Navier-Stokes or MHD equations.


  1. 1.
    Belmont G, Grappin R, Mottez F, Pantellini F, Pelletier G (2014) Collisionless plasmas in astrophysics. Wiley.
  2. 2.
    Chen C, Wicks RT, Horbury TS, Schekochihin AA (2010) Interpreting power anisotropy measurements in plasma turbulence. Astrophys J 711(2):L79–L83ADSCrossRefGoogle Scholar
  3. 3.
    Dong Y, Verdini A, Grappin R (2014) Evolution of turbulence in the expanding solar wind, a numerical study. Astrophys J 793(2):118.
  4. 4.
    Galtier S, Nazarenko SV (2017) Turbulence of weak gravitational waves in the early universe. Phys. Rev. Lett. 119(22):6–688CrossRefGoogle Scholar
  5. 5.
    Grappin R (1996) Onset of anisotropy and Alfvén waves turbulence in the expanding solar wind. In: Proceedings of the eigth international solar wind conference: solar wind eight. AIP Conference Proceedings, vol 382. Observatoire de Paris-Meudon. Centre National de la Recherche Scientifique, Meudon, France, pp 306–309Google Scholar
  6. 6.
    Grappin R (1986) Onset and decay of two-dimensional magnetohydrodynamic turbulence with velocity-magnetic field interaction. Phys Fluids 29:2433–2443ADSCrossRefGoogle Scholar
  7. 7.
    Grappin R, Velli M (1996) Waves and streams in the expanding solar wind. J Geophys Res 101:425–444ADSCrossRefGoogle Scholar
  8. 8.
    Grappin R, Velli M, Mangeney A (1993) Nonlinear wave evolution in the expanding solar wind. Phys Rev Lett 70(14):2190–2193ADSCrossRefGoogle Scholar
  9. 9.
    Hennebelle P, Falgarone E (2012) Turbulent molecular clouds. The Astron Astrophys Rev 20(1):58–133ADSCrossRefGoogle Scholar
  10. 10.
    Holian BL, Grady DE (1988) Fragmentation by molecular dynamics: The microscopic “big bang”. Phys Rev Lett 60:1355–1358.
  11. 11.
    Kolmogorov A (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akademiia Nauk SSSR Doklady 30:301–305ADSMathSciNetGoogle Scholar
  12. 12.
    Lilly DK (1989) Two dimensional turbulence generated by energy sources at two scales. J Atmos Sci 46:2026–2030ADSCrossRefGoogle Scholar
  13. 13.
    Richardson L (1922) Weather prediction by numerical process. Cambridge University PressGoogle Scholar
  14. 14.
    Roberts DA, Ghosh S, Goldstein ML, Mattheaus WH (1991) Magnetohydrodynamic simulation of the radial evolution and stream structure of solar-wind turbulence. Phys Rev Lett 67(27):3741–3744ADSCrossRefGoogle Scholar
  15. 15.
    Saur J, Bieber J (1999) Geometry of low-frequency solar wind magnetic turbulence: evidence for radially aligned Alfvénic fluctuations. J Geophys Res 104(A5):9975–9988ADSCrossRefGoogle Scholar
  16. 16.
    Shebalin JV, Matthaeus WH, Montgomery DC (2009) Anisotropy in MHD turbulence due to a mean magnetic field. J Plasma Phys 29(03):525–547 (ISSN 0022-3778)Google Scholar
  17. 17.
    Vasquez BJ, Smith CW, Hamilton K, MacBride BT, Leamon RJ (2007) Evaluation of the turbulent energy cascade rates from the upper inertial range in the solar wind at 1 AU. J Geophys Res 112(A7).
  18. 18.
    Verdini A, Grappin R (2016) Beyond the Maltese Cross: geometry of turbulence between 0.2 and 1 au. Astrophys J 831(2):1–8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Surface and Plasma ScienceCharles UniversityPragueCzech Republic

Personalised recommendations