Advertisement

Plasma Description

  • Victor Montagud-CampsEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

We adopt a one-fluid description (Magnetohydrodynamics or MHD) of the solar wind plasma. A fluid description describes the plasma in terms of the evolution of its macroscopic variables: density, velocity, pressure, heat flux, ...and the evolution of the magnetic and electric fields, \(\mathbf B \) and \(\mathbf E \), given by Maxwell’s equations. In this chapter we detail the MHD equations and the limitations of this model. We then introduced the Expanding Box Model equations, a modified version of the MHD equations that accounts for the radial expansion of the solar wind.

References

  1. 1.
    Chen FF (1974) Introduction to plasma physics. Springer, US.  https://doi.org/10.1007/978-1-4757-0459-4CrossRefGoogle Scholar
  2. 2.
    Dong Y, Verdini A, Grappin R (2014) Evolution of turbulence in the expanding solar wind, a numerical study. Astrophys J 793(2):118.  https://doi.org/10.1088/0004-637X/793/2/118ADSCrossRefGoogle Scholar
  3. 3.
    Grappin R, Velli M, Mangeney A (1993) Nonlinear wave evolution in the expanding solar wind. Phys Rev Lett 70(14):2190–2193ADSCrossRefGoogle Scholar
  4. 4.
    Hellinger P, Matteini L, Štverák Š, Travnicek P, Marsch E (2011) Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited. J Geophys Res 116(A9).  https://doi.org/10.1029/2011JA016674
  5. 5.
    Hellinger P, Travnicek P, Štverák Š, Matteini L, Velli M (2013) Proton thermal energetics in the solar wind: Helios reloaded. J Geophys Res Space Phys 118(4):1351–1365ADSCrossRefGoogle Scholar
  6. 6.
    Montagud-Camps V, Grappin R, Verdini A (2018) Turbulent heating between 0.2 and 1 au: a numerical study. Astrophys J 853(2):153.  https://doi.org/10.3847/1538-4357/aaa1ea
  7. 7.
    Totten TL, Freeman JW, Arya S (1995) An empirical determination of the polytropic index for the free-streaming solar wind using Helios 1 data. J Geophys Res 100(A1):13–17ADSCrossRefGoogle Scholar
  8. 8.
    Verdini A, Grappin R (2015) Imprints of expansion on the local anisotropy of Solar Wind turbulence. Astrophys J Lett 808(2):L34ADSCrossRefGoogle Scholar
  9. 9.
    Verdini A, Grappin R (2016) Beyond the maltese cross: geometry of turbulence between 0.2 and 1 au. Astrophys J 831(2):1–8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Surface and Plasma ScienceCharles UniversityPragueCzech Republic

Personalised recommendations