Advertisement

Smart Sensing System for Precision Agriculture

  • El-Sayed E. OmranEmail author
  • Abdelazim M. Negm
Chapter
  • 34 Downloads
Part of the Springer Water book series (SPWA)

Abstract

This chapter presented the state-of-the-art survey of the research literature on how emerging technology used to solve agricultural problems specifically related to precision agriculture (PA). Proximal sensing allows measuring many soil and plant properties in situ. These include portable X-ray, spectroscopy, digital camera, smartphone, multistripe laser triangulation scanning, ground-penetrating radar, and electromagnetic induction sensor. Smart (soil, water, and crop) sensors are utilizing new technology to increase the efficiency of agriculture, enabling agricultural users, reducing and saving the input farming cost, managing the agricultural resources in smart ways, and getting higher profit and productivity. Field estimation of soil–plant analysis is possible and can be evaluated with accuracy levels suitable for soil and plant monitoring requirements. This chapter also proposed a smart-based PA system based on the key technologies: Internet of Things (IoT), cloud computing, smartphone computing, and proximal sensors. Environmental sensors have been utilized in applications according to the need to construct smart PA. The cloud is a gathering of platforms and infrastructures on which data are stored and processed, enabling farmers to recover and transfer their data for a particular mobile application, at any site with Internet access. Joining the cloud, IoT, and sensors is fundamental, with the goal that the sensing data can be stored or handled. The proposed system comprises the sensor layer, the transmission layer, the cloud services layer, and the application layer. At last, the advantages and the possible limitations of the system are talked about.

Keywords

Internet of Things Cloud computing Big data analysis Mobile computing Sensor 

Notes

Acknowledgements

Abdelazim Negm acknowledges the partial support of the Science and Technology Development Fund (STDF) of Egypt in the framework of the grant no. 30771 for the project titled “A Novel Standalone Solar-Driven Agriculture Greenhouse—Desalination System: That Grows Its Energy And Irrigation Water” via the Newton-Mosharafa funding scheme.

References

  1. 1.
    Omran ESE (2005) Spatial data infrastructure to support land evaluation applications in Egypt. MSc Thesis GIRS-2005–016, Centre for Geo-Information, Wageningen University, The NetherlandsGoogle Scholar
  2. 2.
    Gore A (1999) The digital Earth: understanding our planet in the 21st century. Photogr Eng Remote Sens 65:528Google Scholar
  3. 3.
    Bian F, Xie T, Cui X, Zeng Y  (2013) Geo-informatics in resource management and sustainable ecosystem. In: (eds) International symposium, GRMSE 2013, Proceedings, Part 2. Wuhan, China, 8–10Google Scholar
  4. 4.
    The Economist (2009) Cloud computing: clash of the clouds. http://www.economist.com/node/14637206. Retrieved 09 Oct 2016
  5. 5.
    Prasad S, Peddoju S, Ghosh D (2013) AgroMobile: a cloud-based framework for agriculturists on mobile platform. Int J Adv Sci Technol 59:41–52Google Scholar
  6. 6.
    Channe H, Kothari S, Kadam D (2015) Multidisciplinary model for smart agriculture using internet-of-things (IoT), sensors, cloud-computing, mobile-computing & big-data analysis. Int J Comput Technol Appl 6(3):374–382Google Scholar
  7. 7.
    Mosa ASM, Yoo I, Sheets L (2012) A systematic review of healthcare applications for smartphones. BMC Med Inf Decis Mak 12(1):67Google Scholar
  8. 8.
    Habib MA, Mohktar MS, Kamaruzzaman SB, Lim KS, Pin TM,  Ibrahim F (2014) Smartphone-based solutions for fall detection and prevention: challenges and open issues. Sensors 14(4):7181–7208Google Scholar
  9. 9.
    Duan, YE (2011) Design of intelligent agriculture management information system based on IOT.In: International conference on intelligent computation technology and automation (ICICTA), vol 1, pp 1045–1049. 28–29 Mar 2011Google Scholar
  10. 10.
    Omran ESE (2008) Is soil science dead and buried? Future image in the world of 10 billion people. CATRINA 3(2):59–68Google Scholar
  11. 11.
    Moran MS, Inoue Y, Barnes EM (1997) Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens Environ 61:319–346Google Scholar
  12. 12.
    Hartemink AE, Minasny B (2016) Digital soil morphometrics. In: (eds) Progress in soil scienceGoogle Scholar
  13. 13.
    Weindorf D, Zhu Y, Chakraborty S, Bakr N, Huang B (2012) Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture. Environ Monit Assess 184:217–227Google Scholar
  14. 14.
    Ben-Dor E, Taylor RG, Hill J, Demattê JAM, Whiting ML, Chabrillat S, Sommer S (2008) Imaging spectrometry for soil applications. In: Sparks DL (ed) Advances in agronomy, Academic Press, Elsevier 97:321–392Google Scholar
  15. 15.
    Roudier P, Hedley C, Ross C (2015) Prediction of volumetric soil organic carbon from field-moist intact soil cores. Eur J Soil Sci 66(4):651–660Google Scholar
  16. 16.
    Omran ESE (2016) Inference model to predict heavy metals of Bahr El Baqar soils, Egypt using spectroscopy and chemometrics technique. Model Earth Syst Environ 3:2: 200Google Scholar
  17. 17.
    Steffens M, Buddenbaum H (2013) Laboratory imaging spectroscopy of a stagnic luvisol profile—high resolution soil characterisation, classification and mapping of elemental concentrations. Geoderma 195:122–132Google Scholar
  18. 18.
    Aitkenhead MJ, Coull M, Towers W, Hudson G, Black H I J  (2013) Prediction of soil characteristics and colour using data from the national soils inventory of Scotland. Geoderma 200:99–107Google Scholar
  19. 19.
    Liles GC, Beaudette D E, O'Geen A T, Horwath W R (2013) Developing predictive soil C models for soils using quantitative color measurements. Soil Sci Soc Am J 77(6):2173–2181Google Scholar
  20. 20.
    O’Donnell TK, Goyne K W, Miles R J, Baffaut C, Anderson S H, Sudduth K A  (2011) Determination of representative elementary areas for soil redoximorphic features identified by digital image processing. Geoderma 161:138–146Google Scholar
  21. 21.
    Gong H, Chen C, Bialostozky E, Lawson C T (2012) A GPS/GIS method for travel mode detection in New York City. Comput Environ Urban Syst 36(2):131–139Google Scholar
  22. 22.
    Anjum A, Ilyas MU (2013) Activity recognition using smartphone sensors. In: Proceedings of the IEEE 10th consumer communications and networking conference (CCNC’13), pp 914–919Google Scholar
  23. 23.
    Chaovalit P, Saiprasert C, Pholprasit T (2014) A method for driving event detection using sax with resource usage exploration on smartphone platform. EURASIP J Wirel Commun Netw 2014(135)Google Scholar
  24. 24.
    Werner M, Kessel M, Marouane C (2011) Indoor positioning using smartphone camera. In: Proceedings of the international conference on indoor positioning and indoor navigation (IPIN’11), 6(1)Google Scholar
  25. 25.
    IUSS Working Group WRB, World reference base for soil resources World Soil Resources Reports, 2006. No. 103. FAO, RomeGoogle Scholar
  26. 26.
    Ibanez-Asensio S, Marques-Mateu A, Moreno-Ramon H, Balasch S  (2013) Statistical relationships between soil colour and soil attributes in semiarid areas. Biosys Eng 116(2):120–129Google Scholar
  27. 27.
    Humphrey C, O’Driscoll M (2011) Evaluation of soil colors as indicators of the seasonal high water table in coastal North Carolina. Int J Soil Sci 6(2):103–113Google Scholar
  28. 28.
    Gunal H, Ersahin S, Yetgin B, Kutlu T  (2008) Use of chromameter-measured color parameters in estimating color-related soil variables. Commun Soil Sci Plant Anal 39(5–6):726–740Google Scholar
  29. 29.
    Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, DCGoogle Scholar
  30. 30.
    Billmeyer F, Saltzman M (1981) Principles of color technology. Wiley, New York, NYGoogle Scholar
  31. 31.
    Sánchez-Marañón M, Huertas R, Melgosa M (2005) Colour variation in standard soil-colour charts. Soil Res 43(7):827–837Google Scholar
  32. 32.
    Viscarra Rossel RA (2008) The soil spectroscopy group and the development of a global spectral library. In: 3rd global workshop on digital soil mapping. Utah State University, Logan, Utah, USA, 30 Sept–3 Oct 2008Google Scholar
  33. 33.
    Aydemir S, Keskin S, Drees LR (2004) Quantification of soil features using digital image processing (DIP) techniques. Geoderma 119(1–2):1–8CrossRefGoogle Scholar
  34. 34.
    Pongnumkul S, Chaovalit P, Surasvadi N (2015) Applications of smartphone-based sensors in agriculture: a systematic review of research. J Sens 2015:18 (ID 195308)Google Scholar
  35. 35.
    Han P, Dong D, Zhao X, Jiao L, Lang Y  (2016) A smartphone-based soil color sensor: for soil type classification. Comput Electron Agric 123:232–241CrossRefGoogle Scholar
  36. 36.
    Gomez-Robledo L, Lopez-Ruiz N, Melgosa M, Palma A, Capitan-Vallvey L, Sanchez-Maranon M  (2013) Using the mobile phone as Munsell soil-colour sensor: an experiment under controlled illumination conditions. Comput Electron Agric 99:200–208CrossRefGoogle Scholar
  37. 37.
    Levin N, Ben-Dor E, Singer A (2005) A digital camera as a tool to measure colour indices and related properties of sandy soils in semi-arid environments. Int J Remote Sens 26(24):5475–5492CrossRefGoogle Scholar
  38. 38.
    Gregory S, Lauzon J, O’Halloran I, Heck R  (2006) Predicting soil organic matter content in southwestern Ontario fields using imagery from high-resolution digital cameras. Can J Soil Sci 86(3):573–584CrossRefGoogle Scholar
  39. 39.
    Aitkenhead M, Donnelly D, Coull M, Black H  (2013) E-smart: environmental sensing for monitoring and advising in real-time. IFIP Adv Inf Commun Technol 413:129–142CrossRefGoogle Scholar
  40. 40.
    Murphy CP, Bullock P, Turner RH (1977) The measurement and characterisation of voids in soil thin sections by image analysis. Part I. Principles and techniques. Eur J Soil Sci 28(3): 498–508Google Scholar
  41. 41.
    Bouma J, Jongerius A, Boersma O, Jager A, Schoonderbeek D  (1977) The function of different types of macropores during saturated flow through four swelling soil horizons. Soil Sci Soc Am J 41:945–950CrossRefGoogle Scholar
  42. 42.
    Koppi A, McBratney A (1991) A basis for soil mesomorphological analysis. J Soil Sci 42(1):139–146CrossRefGoogle Scholar
  43. 43.
    Guber A, Pachepsky Y, van Genuchten M, Rawls W, Simunek J, Jacques D, Nicholson T, Cady R  (2006) Field-scale water flow simulations using ensembles of pedotransfer functions for soil water retention. Vadose Zone J 5:234–247CrossRefGoogle Scholar
  44. 44.
    Berger K, Muckenhirn R (1945) Soil profiles of natural appearance mounted with vinylite resin. Proc Soil Sci Soc Am 10:368–370CrossRefGoogle Scholar
  45. 45.
    Brown L (1963) Lacquer cement method of making soil monoliths. University of California, Division of Agricultural Sciences, California Agricultural Experiment StationGoogle Scholar
  46. 46.
    Haddad N, Lawrie R, Eldridge S (2009) Improved method of making soil monoliths using an acrylic bonding agent and proline auger. Geoderma 151:395–400CrossRefGoogle Scholar
  47. 47.
    Hussain I, Das M, Ahamad K, Nath P (2017) Water salinity detection using a smartphone. Sens Actuators B: Chem 239:1042–1050CrossRefGoogle Scholar
  48. 48.
    Levin S, Krishnan S, Rajkumar S, Halery N, Balkunde P (2016) Monitoring of fluoride in water samples using a smartphone. Sci Total Environ 551–552:101–107CrossRefGoogle Scholar
  49. 49.
    Gunda N, Naicker S, Shinde S, Kimbahune S, Shrivastava S, Mitra S  (2014) Mobile water kit (MWK): a smartphone compatible low-cost water monitoring system for rapid detection of total coliform and E. coli. Anal Methods 6(16 21):6139–6590Google Scholar
  50. 50.
    Garcıa A, Erenas M, Marinetto E (2011) Mobile phone platform as portable chemical analyze. Sens Actuators B Chem 156:350–359CrossRefGoogle Scholar
  51. 51.
    Moonrungsee N, Pencharee S, Peamaroon N (2016) Determination of iron in zeolite catalysts by a smartphone camera-based colorimetric analyzer. Instrum Sci Technol 44(4)Google Scholar
  52. 52.
    Lopez-Ruiz N, Curto V, Erenas M, Benito-Lopez F, Diamond D, Palma A,  Capitan-Vallvey L  (2014) Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices anal. Chem 86(19):9554–9562Google Scholar
  53. 53.
    Prasad S, Peddoju SK, Ghosh D (2014) Energy efficient mobile vision system for plant leaf disease identification. In: Proceedings of the IEEE wireless communications and networking conference (WCNC’14), pp 3314–3319Google Scholar
  54. 54.
    Rafoss T, Sælid K, Sletten A, Gyland L F, Engravslia L  (2010) Open geospatial technology standards and their potential in plant pest risk management-GPS-enabled mobile phones utilising open geospatial technology standards web feature service transactions support the fighting of fire blight in norway. Comput Electron Agric 74(2):336–340CrossRefGoogle Scholar
  55. 55.
    Saha B, Ali K, Basak P, Chaudhuri A  (2012) Developmentof m-sahayak-the innovative android based application for real-time assistance in Indian agriculture and health sectors. In: Proceedings of the 6th international conference on mobile ubiquitous computing, systems, services and technologies (UBICOMM’12), pp 133–137Google Scholar
  56. 56.
    Mesas-Carrascosa FJ, Castillejo-Gonz´alez I L, de la Orden M S, Garc´ıa-Ferrer A  (2012) Real-time mobile phone application to support land policy. Comput Electron Agric 85:109–111CrossRefGoogle Scholar
  57. 57.
    Confalonieri R, Foi M, Casa R, and et al (2013) Development of an app for estimating leaf area index using a smartphone. Trueness and precision determination and comparison with other indirect methods. Comput Electron Agric 96:67–74Google Scholar
  58. 58.
    Frommberger L, Schmid F, Cai C (2013) Micro-mapping with smartphones for monitoring agricultural development. In: Proceedings of the 3rd ACM symposium on computing for development (DEV’13)Google Scholar
  59. 59.
    Raza S-e-A, Prince G, Clarkson J, Rajpoot N  (2015) Automatic detection of diseased tomato plants using thermal and stereo visible light images. PLoS ONE 10(4):e0123262Google Scholar
  60. 60.
    Duveiller G, Baret F, Defourny P (2012) Remotely sensed green area index for winter wheat crop monitoring: 10-year assessment at regional scale over a fragmented landscape. Agric Meteorol 166–167:156–168CrossRefGoogle Scholar
  61. 61.
    Gianquinto G, Orsini F, Fecondini M, Mezzetti M, Sambo P, Bona S  (2011) A methodological approach for defining spectral indices for assessing tomato nitrogen status and yield. Eur J Agron 35:135–143CrossRefGoogle Scholar
  62. 62.
    Bagheri N, Ahmad H, Alavipanah S K, Omid M (2013) Multispectral remote sensing for site-specific nitrogen fertilizer management. Pesqui Agropecuária Bras 48(10)Google Scholar
  63. 63.
    Sumriddetchkajorn S (2013) How optics and photonics is simply applied in agriculture? In: International conference on photonics solutions of Proceedings of SPIE, vol 8883Google Scholar
  64. 64.
    Intaravanne Y, Sumriddetchkajorn S (2012) Baikhao (rice leaf) app: a mobile device-based application in analyzing the color level of the rice leaf for nitrogen estimation. In: Optoelectronic imaging and multimedia technology II, Proceedings of SPIE, vol 8558. The International Society for Optical Engineering, WashingtonGoogle Scholar
  65. 65.
    Omran E, El-Masry G, Rashad A (2012) A new approach to assess wetting front map by image analysis technique for precision irrigation farming. In: International conference of agricultural engineering CIGR-AgEng2012, Papers Book, Valencia 8–12 July 2012. ISBN: 10-84-615-9928-4Google Scholar
  66. 66.
    Aroca RV, Gomes R B, Dantas R R, Calbo A G (2013) A wearable mobile sensor platform to assist fruit grading. Sens (Basel) 13(5):6109–6140CrossRefGoogle Scholar
  67. 67.
    Hettipathirana T (2004) Simultaneous determination of parts-per-million level Cr, As, Cd and Pb, and major elements in low level contaminated soils using borate fusion and energy dispersive X-ray fluorescence spectrometry with polarized excitation. Spectrochim Acta Part B 59:223–229Google Scholar
  68. 68.
    Gianoncelli A,  Castaing J, Ortega L, Dooryhee E, Salomon J, Walter P, Hodeau J, Bordet P  (2008) A portable instrument for in situ determination of the chemical and phase compositions of cultural heritage objects. X-Ray Spectrom 37(4):418–423CrossRefGoogle Scholar
  69. 69.
    Downs R (2015) Determining mineralogy on mars with the CheMin X-ray diffractometer. Elements 11(1):45–50CrossRefGoogle Scholar
  70. 70.
    Cannon K, Mustard J, Salvatore M (2015) Alteration of immature sedimentary rocks on Earth and Mars: recording aqueous and surface–atmosphere processes. Earth Planet Sci Lett 417:78–86CrossRefGoogle Scholar
  71. 71.
    Eck D, Hirmas D, Giménez D (2013) Quantifying soil structure from field excavation walls using multistripe laser triangulation scanning. Soil Sci Soc Am J 77:1319–1328CrossRefGoogle Scholar
  72. 72.
    Usamentiaga R, Molleda J, Garcia D, Bulnes F  (2014) Removing vibrations in 3D reconstruction using multiple laser stripes. Opt Lasers Eng 53:51–59CrossRefGoogle Scholar
  73. 73.
    Hirmas D et al (2016) Quantifying soil structure and porosity using three-dimensional laser scanning. In: Hartemink AE, Minasny B (eds) Digital soil morphometrics. Springer, DordrechtGoogle Scholar
  74. 74.
    Rossi A, Hirmas D, Graham R, Sternberg P  (2008) Bulk density determination by automated three-dimensional laser scanning. Soil Sci Soc Am J 72:1591–1593CrossRefGoogle Scholar
  75. 75.
    Subroy V, Giménez D, Hirmas D, Takhistov P  (2012) On determining soil aggregate bulk density by displacement in two immiscible liquids. Soil Sci Soc Am J 76:1212–1216CrossRefGoogle Scholar
  76. 76.
    Zielinski M, Sánchez M, Romero E, Atique A  (2014) Precise observation of soil surface curling. Geoderma 226–227:85–93CrossRefGoogle Scholar
  77. 77.
    Sanchez M, Atique A, Kim S, Romero E, Zielinski M (2013) Exploring desiccation cracks in soils using a 2D profile laser device. Acta Geotech 8:583–596CrossRefGoogle Scholar
  78. 78.
    Viscarra Rossel R, Webster R (2011) Discrimination of Australian soil horizons and classes from their visible-near infrared spectra. Eur J Soil Sci 62(4):637–647Google Scholar
  79. 79.
    Waiser T, Morgan C, Brown D, Hallmark C (2007) In situ characterization of soil clay content with visible near-infrared diffuse reflectance spectroscopy. Soil Sci Soc Am J 71(2):389–396CrossRefGoogle Scholar
  80. 80.
    Viscarra Rossel RA, Cattle S R, Ortega A, Fouad Y (2009) In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma 150:253–266CrossRefGoogle Scholar
  81. 81.
    Lagacherie P, Baret F, Feret J, Madeira Netto J, Robbez-Masson J  (2008) Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens Environ 112:825–835CrossRefGoogle Scholar
  82. 82.
    Steffens M, Kohlpaintner M, Buddenbaum H (2014) Fine spatial resolution mapping of soil organic matter quality in a histosol profile. Eur J Soil Sci 65:827–839CrossRefGoogle Scholar
  83. 83.
    Viscarra Rossel R, Hicks W (2015) Estimates of soil organic carbon and its fractions with small uncertainty using visible–near infrared transfer functions. Eur J Soil Sci 66:438–450Google Scholar
  84. 84.
    Van Maarschalkerweerd M, Husted S (2015) Recent developments in fast spectroscopy for plant mineral analysis. Front Plant Sci 6:169CrossRefGoogle Scholar
  85. 85.
    Tremblay N, Wang Z J, Ma B L, Belec C, Vigneault P  (2009) A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application. Precis Agric 10:145–161Google Scholar
  86. 86.
    Samborski SM, Tremblay N, Fallon E (2009) Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron J 101:800–816Google Scholar
  87. 87.
    Schmidt SB, Pedas P, Laursen K H, Schjoerring J K, Husted S  (2013) Latent manganese deficiency in barley can be diagnosed and remediated on the basis of chlorophyll a fluorescence measurements. Plant Soil Environ 372:417–429Google Scholar
  88. 88.
    Castro ACM, Meixedo J P, Santos J M, Góis J, Bento- Gonçalves A, Vieira A, Lourenço L  (2015) On sampling collection procedure effectiveness for forest soil characterization. Flamma 6:98–100Google Scholar
  89. 89.
    Liu X, Xuejun D, Daniel IL (2016) Ground penetrating radar for underground sensing in agriculture: a review. Int Agrophys 30:533–543CrossRefGoogle Scholar
  90. 90.
    Cheng N, Conrad Tang H, Chan C (2013) Identification and positioning of underground utilities using ground penetrating radar (GPR). Sustain Environ Res 23(2):141–152Google Scholar
  91. 91.
    Doolittle J, Butnor J (2008) Chapter 6: Soils, peatlands, and biomonitoring. In: Jol HM (ed) Ground penetrating radar: theory and applications. Elsevier, Amsterdam, The Netherlands, pp 179–202Google Scholar
  92. 92.
    Guo L, Chen J, Cui X, Fan B,  Lin H (2013) Application of ground penetrating radar for coarse root detection and quantification: a review. Plant Soil 362:1–23CrossRefGoogle Scholar
  93. 93.
    Qin Y, Chen X, Zhou K, Klenk P, Roth K,  Sun L (2013) Ground-penetrating radar for monitoring the distribution of near-surface soil water content in the Gurbantünggüt Desert. Environ Earth Sci 70:2883–2893CrossRefGoogle Scholar
  94. 94.
    Van Dam RL (2014) Calibration functions for estimating soil moisture from GPR dielectric constant measurements. Comm Soil Sci Plant Anal 45:392–413CrossRefGoogle Scholar
  95. 95.
    Mahmoudzadeh M, Francés A, Lubczynski M, Lambot S (2012) Using ground penetrating radar to investigate the water table depth in weathered granites-Sardon case study. Spain J Appl Geophys 79:17–26CrossRefGoogle Scholar
  96. 96.
    Tosti F, Patriarca C, Slob E, Benedetto A, Lambot S  (2013) Clay content evaluation in soils through GPR signal processing. J Appl Geophys 97:69–80CrossRefGoogle Scholar
  97. 97.
    Raper RL, Asmussen L, Powell JB (1990) Sensing hard pan depth with ground-penetrating radar. Trans ASAE 33:41–46CrossRefGoogle Scholar
  98. 98.
    Schmelzbach C, Tronicke J, Dietrich P (2012) Highresolution water content estimation from surface-based ground-penetrating radar reflection data by impedance inversion. Wat Resour Res 48:W08505CrossRefGoogle Scholar
  99. 99.
    Barton CV, Montagu KD (2004) Detection of tree roots and determination of root diameters by ground penetrating radar under optimal conditions. Tree Physiol 24:1323–1331CrossRefGoogle Scholar
  100. 100.
    Guo L, Lin H, Fan B, Cui X, Chen J  (2013) Impact of root water content on root biomass estimation using ground penetrating radar: evidence from forward simulations and field controlled experiments. Plant Soil 371:503–520CrossRefGoogle Scholar
  101. 101.
    Zhu S, Huang C, Su Y, Sato M  (2014) 3D ground penetrating radar to detect tree roots and estimate root biomass in the field. Remote Sens 6:5754–5773CrossRefGoogle Scholar
  102. 102.
    De Benedetto D, Castrignano A, Rinaldi M, Ruggieri S, Santoro F, Figorito B, Gualano S, Diacono M, Tamborrino  R (2013) An approach for delineating homogeneous zones by using multi-sensor data. Geoderma 199:117–127CrossRefGoogle Scholar
  103. 103.
    Tromp-van Meerveld HJ, McDonnell JJ (2009) Assessment of multi-frequency electromagnetic induction for determining soil moisture patterns at the hillslope scale. J Hydrol 368:56–67Google Scholar
  104. 104.
    Heil K, Schmidhalter U (2012) Characterisation of soil texture variability using apparent electrical conductivity at a highly variable site. Comput Geosci 39:98–110CrossRefGoogle Scholar
  105. 105.
    White ML, Michele L, Shaw JN, Raper R L, Rodekohr D, Wood C (2012) A multivariate approach for high-resolution soil survey development. Soil Sci Aoc Am J 177(5):345–354CrossRefGoogle Scholar
  106. 106.
    Cockx L, Van Meirvenne M, Vitharana U W A, Verbeke L P C, Simpson D, Saey T, Van Coille F M B  (2009) Extracting topsoil information from EM38DD sensor data using neural network approach. Soil Sci Soc Am J 73(6):1–8CrossRefGoogle Scholar
  107. 107.
    Harvey OR, Morgan CLS (2009) Predicting regional-scale soil variability using single calibrated apparent soil electrical conductivity model. Soil Sci Soc Am J 73:164–169CrossRefGoogle Scholar
  108. 108.
    Doolittle J, Chibirka J, Muniz E, Shaw R (2013) Using EMI and P-XRF to characterize the magnetic properties and the concentration of metals in soils formed over different lithologies. Soil Horiz 54(3):1–10Google Scholar
  109. 109.
    Al-Gaadi K (2012) Employing electromagnetic induction techniques for the assessment of soil compaction. Am J Agric Biol Sci 4:425–434Google Scholar
  110. 110.
    Triantafilis J, Lesch S M, La Lau K, Buchanan S M  (2009) Field level digital mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model. Aust J Soil Res 47:651–663CrossRefGoogle Scholar
  111. 111.
    Vitharana UWA, Van Meirvenne M, Simpson D, Cockx L,  De Baerdemaeker J  (2008) Key soil and topographic properties to delineate potential management classes for precision agriculture in the European loess area. Geoderma 143:206–215CrossRefGoogle Scholar
  112. 112.
    Van Meirvenne M, Islam M M, De Smedt P, Meerschman E, Van De Vijver E, Saey T  (2013) Key variables for the identification of soil management classes in the aeolian landscapes of North–West Europe. Geoderma 199:99–105CrossRefGoogle Scholar
  113. 113.
    Martinez G, Vanderlinden K, Ordóñez R, Muriel J L  (2009) Can apparent electrical conductivity improve the spatial characterization of soil organic carbon? Vadose Zone J 8(3):586–593CrossRefGoogle Scholar
  114. 114.
    Wienhold BJ, Doran JW (2008) Apparent electrical conductivity for delineating spatial variability in soil properties. In: Allred BJ, Daniels JJ, Ehsani MR (eds) Handbook of agricultural geophysics. CRC Press, Taylor and Francis Group, Boca Raton, Florida, pp 211–215Google Scholar
  115. 115.
    Shaner DL, Kosla R, Brodahl M K, Buchleiter G W,  Farahani H J  (2008) How well do zone sampling based soil electrical conductivity maps represent soil variability? Agron J 100(5):1472–1480CrossRefGoogle Scholar
  116. 116.
    Johnston MA, Savage M J, Moolman J H, du Plessis H M  (1997) Evaluation of calibration methods for interpreting soil salinity from electromagnetic induction measurements. Soil Sci Soc Am J 61:1627–1633CrossRefGoogle Scholar
  117. 117.
    Lesch SM, Herrero J, Rhoades JD (1998) Monitoring for temporal changes in soil salinity using electromagnetic induction techniques. Soil Sci Soc Am J 62:232–242CrossRefGoogle Scholar
  118. 118.
    Doolittle J, Brevik EC (2014) The use of electromagnetic induction techniques in soils studies. Publications from USDA-ARS/ UNL Faculty. Paper 1462. http://digitalcommons.unl.edu/usdaarsfacpub/1462
  119. 119.
    Cassel F, Goorahoo D, Zoldoske D, Adhikari D (2009) Mapping soil salinity using ground-based electromagnetic induction. In: Metternicht G, Zinck JA (eds) Remote sensing of soil salinization. CRC Press, Taylor and Francis Group, Boca Raton, Florida, pp 199–233Google Scholar
  120. 120.
    Morris ER (2009) Height-above-ground effects on penetration depth and response of electromagnetic induction soil conductivity meters. Comput Electron Agric 68:150–156CrossRefGoogle Scholar
  121. 121.
    Omran ESE (2016) Early sensing of peanut leaf spot using spectroscopy and thermal imaging. Arch Agron Soil Sci 1–14Google Scholar
  122. 122.
    Sawaya WN (2000) Proposal for the establishment of a regional network for date-palm in the near East and North Africa. A Draft Discuss FAO/RNEGoogle Scholar
  123. 123.
    Dembilio Ó, Jacas JA, Llácer E (2009) Are the palms Washingtonia filifera and chamaerops humilis suitable hosts for the red palm weevil, Rhynchophorus ferrugineus (Col. Curculionidae). J Appl Entomol 33:565–567Google Scholar
  124. 124.
    Mahmud AI, João F, Eleonore RAV (2015) Red palm weevil (Rhynchophorus ferrugineus Olivier, 1790): Threat of Palms. J Biol Sci 15(2):56–67CrossRefGoogle Scholar
  125. 125.
    Faleiro JR (2005) Insight into the management of red palm weevil Rhynchophorus ferrugineus Olivier: based on experiences on coconut in India and date palm in Saudi Arabia, Fundación Agroalimed. Jorn Int Sobre El Picudo Rojo Las Palmeras 27–29:35–57Google Scholar
  126. 126.
    Yones MS, Arafat SM, Abou Hadid A F, Abd Elrahman H A,  Dahi H F  (2012) Determination of the best timing for control application against cotton leaf worm using remote sensing and geographical information techniques. Egypt J Remote Sens Space Sci 15:151–160Google Scholar
  127. 127.
    Mozib ME, El-Shafie HA (2013) Effect of red palm weevil, Rhynchophorus ferrugineus (Olivier) infestation on temperature profiles of date palm tree. J Entomol Nematol 5(6):77–83CrossRefGoogle Scholar
  128. 128.
    Li D, Yao Y, Shao Z, Wang L (2014) From digital Earth to smart Earth. Chin Sci Bull 59(8):722–733CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Soil and Water Department, Faculty of AgricultureSuez Canal UniversityIsmailiaEgypt
  2. 2.Institute of African Research and Studies and Nile Basin CountriesAswan UniversityAswanEgypt
  3. 3.Water and Water Structures Engineering Department, Faculty of EngineeringZagazig UniversityZagazigEgypt

Personalised recommendations