Advertisement

A Multi-disciplinary Approach for Mechanical Metamaterial Synthesis: A Hierarchical Modular Multiscale Cellular Structure Paradigm

  • Mustafa Erden Yildizdag
  • Chuong Anthony Tran
  • Emilio Barchiesi
  • Mario SpagnuoloEmail author
  • Francesco dell’Isola
  • François Hild
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 100)

Abstract

Recent advanced manufacturing techniques such as 3D printing have prompted the need for designing new multiscale architectured materials for various industrial applications. These multiscale architectures are designed to obtain the desired macroscale behavior by activating interactions between different length scales and coupling different physical mechanisms. Although promising results have been recently obtained, the design of such systems still represents a challenge in terms of mathematical modeling, experimentation, and manufacturing. In this paper, some research perspectives are discussed aiming to determine the most efficient methodology needed to design novel metamaterials. A multidisciplinary approach based on Digital Image Correlation (DIC) techniques may be very effective. The main feature of the described DIC-based approach consists of the integration of different methodologies to create a synergistic relationship among the different steps from design to fabrication and validation. Experimental techniques and modeling approaches are envisioned to be combined in feedback loops whose objective is to determine the required multiscale architectures of newly designed metamaterials. Moreover, it is necessary to develop appropriate mathematical models to estimate the behavior of such metamaterials. Within this new design approach, the manufacturing process can be effectively guided by a precise theoretical and experimental framework. In order to show the applicability of the proposed approach, some preliminary results are provided for a particular type of mechanical metamaterial, namely, pantographic metamaterials. Lastly, the most relevant challenges are highlighted among those that must be addressed for future applications.

Keywords

Synthesis of metamaterials Generalized models Analog circuits Pantographic structures Digital image correlation Homogenization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdoul-Anziz H, Seppecher P (2018) Strain gradient and generalized continua obtained by homogenizing frame lattices. Mathematics and mechanics of complex systems 6(3):213–250Google Scholar
  2. Alibert JJ, Seppecher P, dell’Isola F (2003) Truss modular beams with deformation energy depending on higher displacement gradients. Mathematics and Mechanics of Solids 8(1):51–73Google Scholar
  3. Altenbach H, Eremeyev VA, Naumenko K (2015) On the use of the first order shear deformation plate theory for the analysis of three-layer plates with thin soft core layer. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 95(10):1004–1011Google Scholar
  4. Ambati M, Fang N, Sun C, Zhang X (2007) Surface resonant states and superlensing in acoustic metamaterials. Physical Review B 75(19):195,447Google Scholar
  5. Andreau O, Koutiri I, Peyre P, Penot JD, Saintier N, Pessard E, De Terris T, Dupuy C, Baudin T (2019) Texture control of 316l parts by modulation of the melt pool morphology in selective laser melting. Journal of Materials Processing Technology 264:21–31Google Scholar
  6. Andrews E, Sanders W, Gibson LJ (1999) Compressive and tensile behaviour of aluminum foams. Materials Science and Engineering: A 270(2):113–124Google Scholar
  7. Andreykiv A, Prendergast P, Van Keulen F, Swieszkowski W, Rozing P (2005) Bone ingrowth simulation for a concept glenoid component design. Journal of biomechanics 38(5):1023–1033Google Scholar
  8. Ao X, Chan C (2008) Far-field image magnification for acoustic waves using anisotropic acoustic metamaterials. Physical Review E 77(2):025,601Google Scholar
  9. Auffray N, dell’Isola F, Eremeyev V, Madeo A, Placidi L, Rosi G (2014) Least action principle for second gradient continua and capillary fluids: A lagrangian approach following piola’s point of view. In: dell’Isola F, Maier G, Perego U, Andreaus U, Esposito R, Forest S (eds) The Complete Works of Gabrio Piola: Volume I, Springer, Cham, Advanced Structured Materials, vol 38, pp 606–694Google Scholar
  10. Barchiesi E, Placidi L (2017) A review on models for the 3d statics and 2d dynamics of pantographic fabrics. In: Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, Springer, pp 239–258Google Scholar
  11. Barchiesi E, Spagnuolo M, Placidi L (2018) Mechanical metamaterials: a state of the art. Mathematics and Mechanics of Solids 24(1):212–234, DOI: https://doi.org/10.1177/1081286517735695
  12. Barchiesi E, Spagnuolo M, Placidi L (2019) Mechanical metamaterials: a state of the art. Mathematics and Mechanics of Solids 24(1):212–234, DOI: https://doi.org/10.1177/1081286517735695
  13. Bergamini A, Christen R, Maag B, Motavalli M (2006) A sandwich beam with electrostatically tunable bending stiffness. Smart materials and structures 15(3):678Google Scholar
  14. Bergamini AE, Zündel M, Flores Parra EA, Delpero T, Ruzzene M, Ermanni P (2015) Hybrid dispersive media with controllable wave propagation: A new take on smart materials. Journal of Applied Physics 118(15):154,310Google Scholar
  15. Boutin C, Giorgio I, Placidi L, et al (2017) Linear pantographic sheets: Asymptotic micro-macro models identification. Mathematics and Mechanics of Complex Systems 5(2):127–162Google Scholar
  16. Carcaterra A, dell’Isola F, Esposito R, Pulvirenti M (2015) Macroscopic description of micro- scopically strongly inhomogeneous systems: A mathematical basis for the synthesis of higher gradients metamaterials. Archive for Rational Mechanics and Analysis 218(3):1239–1262Google Scholar
  17. Casadei F, Delpero T, Bergamini A, Ermanni P, Ruzzene M (2012) Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials. Journal of Applied Physics 112(6):064,902Google Scholar
  18. Cazzani A, Ruge P (2013) Rotor platforms on pile-groups running through resonance: A comparison between unbounded soil and soil-layers resting on a rigid bedrock. Soil Dynamics and Earthquake Engineering 50:151–161, DOI: https://doi.org/10.1016/j.soildyn.2013.02.022
  19. Cazzani A, Ruge P (2016) Stabilization by deflation for sparse dynamical systems without loss of sparsity. Mechanical Systems and Signal Processing 70–71:664–681, DOI: https://doi.org/10.1016/j.ymssp.2015.09.027
  20. Cazzani A, Malagù M, Turco E (2016a) Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Continuum Mechanics and thermodynamics 28(1-2):139–156Google Scholar
  21. Cazzani A, Malagù M, Turco E (2016b) Isogeometric analysis of plane-curved beams. Mathematics and Mechanics of Solids 21(5):562–577Google Scholar
  22. Cazzani A, Malagù M, Turco E, Stochino F (2016c) Constitutive models for strongly curved beams in the frame of isogeometric analysis. Mathematics and Mechanics of Solids 21(2):182–209Google Scholar
  23. Cazzani A, Stochino F, Turco E (2016d) An analytical assessment of finite element and isogeometric analyses of the whole spectrum of timoshenko beams. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 96(10):1220–1244Google Scholar
  24. Cazzani A, Rizzi N, Stochino F, Turco E (2018a) Modal analysis of laminates by a mixed assumed-strain finite element model. Mathematics and Mechanics of Solids 23(1):99–119, DOI: https://doi.org/10.1177/1081286516666405
  25. Cazzani A, Serra M, Stochino F, Turco E (2018b) A refined assumed strain finite element model for statics and dynamics of laminated plates. Continuum Mechanics and Thermodynamics pp 1–28, DOI: https://doi.org/10.1007/s00161-018-0707-x
  26. Chevalier L, Calloch S, Hild F, Marco Y (2001) Digital image correlation used to analyze the multiaxial behavior of rubber-like materials. Eur J Mech A/Solids 20:169–187Google Scholar
  27. Chia HN, Wu BM (2015) Recent advances in 3d printing of biomaterials. Journal of Biological Bngineering 9(1):4Google Scholar
  28. Cima M, Sachs E, Cima L, Yoo J, Khanuja S, Borland S, Wu B, Giordano R (1994) Computer-derived microstructures by 3d printing: bio-and structural materials. In: Solid Freeform Fabr Symp Proc: DTIC Document, pp 181–90Google Scholar
  29. di Cosmo F, Laudato M, Spagnuolo M (2018) Acoustic metamaterials based on local resonances: homogenization, optimization and applications. In: Generalized Models and Non-classical Approaches in Complex Materials 1, Springer, pp 247–274Google Scholar
  30. Del Vescovo D, Giorgio I (2014a) Dynamic problems for metamaterials: review of existing models and ideas for further research. International Journal of Engineering Science 80:153–172Google Scholar
  31. Del Vescovo D, Giorgio I (2014b) Dynamic problems for metamaterials: review of existing models and ideas for further research. International Journal of Engineering Science 80:153–172Google Scholar
  32. dell’Isola F, Placidi L (2011) Variational principles are a powerful tool also for formulating field theories. In: Variational models and methods in solid and fluid mechanics, Springer, pp 1–15Google Scholar
  33. dell’Isola F, Andreaus U, Placidi L (2015a) At the origins and in the vanguard of peridynamics, non- local and higher-gradient continuum mechanics: An underestimated and still topical contribution of gabrio piola. Mathematics and Mechanics of Solids 20(8):887–928Google Scholar
  34. dell’Isola F, Lekszycki T, Pawlikowski M, Grygoruk R, Greco L (2015b) Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Zeitschrift für angewandte Mathematik und Physik 66(6):3473–3498Google Scholar
  35. dell’Isola F, Steigmann D, Della Corte A (2015c) Synthesis of fibrous complex structures: de- signing microstructure to deliver targeted macroscale response. Applied Mechanics Reviews 67(6):060,804Google Scholar
  36. dell’Isola F, Bucci S, Battista A (2016a) Against the fragmentation of knowledge: The power of multidisciplinary research for the design of metamaterials. In: Advanced Methods of Continuum Mechanics for Materials and Structures, Springer, pp 523–545Google Scholar
  37. dell’Isola F, Giorgio I, Pawlikowski M, Rizzi N (2016b) Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc R Soc A 472(2185):20150,790Google Scholar
  38. dell’Isola F, Della Corte A, Giorgio I (2017) Higher-gradient continua: The legacy of piola, mindlin, sedov and toupin and some future research perspectives. Mathematics and Mechanics of Solids 22(4):852–872Google Scholar
  39. dell’Isola F, Seppecher P, Alibert JJ, Lekszycki T, Grygoruk R, Pawlikowski M, Steigmann D, Giorgio I, Andreaus U, Turco E, Golaszewski M, Rizzi N, Boutin C, Eremeyev VA, Misra A, Placidi L, Barchiesi E, Greco L, Cuomo M, Cazzani A, Corte AD, Battista A, Scerrato D, Zurba Eremeeva I, Rahali Y, Ganghoffer JF, Müller W, Ganzosch G, Spagnuolo M, Pfaff A, Barcz K, Hoschke K, Neggers J, Hild F (2019a) Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mechanics and Thermodynamics DOI: https://doi.org/10.1007/s00161-018-0689-8
  40. dell’Isola F, Seppecher P, Spagnuolo M, Barchiesi E, Hild F, Lekszycki T, Giorgio I, Placidi L, Andreaus U, Cuomo M, Eugster SR, Pfaff A, Hoschke K, Langkemper R, Turco E, Sarikaya R, MISRA A, DE ANGELO M, D'Annibale F, Bouterf A, Pinelli X, Misra A, Desmorat B, Pawlikowski M, Dupuy C, Scerrato D, Peyre P, Laudato M, Manzari L, Göransson P, Hesch C, Hesch S, Franciosi P, Dirrenberger J, Maurin F, Vangelatos Z, Grigoropoulos C, Melissinaki V, Farsari M, Muller W, Abali E, Liebold C, Ganzosch G, Harrison P, Drobnicki R, Igumnov LA, Alzahrani F, Hayat T (2019b) Advances in Pantographic Structures: Design, Manufactur- ing, Models, Experiments and Image Analyses. Continuum Mechanics and Thermodynamics DOI: https://doi.org/10.1007/s00161-019-00806-x
  41. dell’Isola F, Seppecher P, Spagnuolo M, Barchiesi E, Hild F, Lekszycki T, Giorgio I, Placidi L, Andreaus U, Cuomo M, et al (2019c) Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mechanics and Thermodynamics pp 1–52, DOI: https://doi.org/10.1007/s00161-019-00806-x
  42. Deng K, Ding Y, He Z, Zhao H, Shi J, Liu Z (2009) Theoretical study of subwavelength imaging by acoustic metamaterial slabs. Journal of Applied Physics 105(12):124,909Google Scholar
  43. Engheta N, Ziolkowski RW (2006) Metamaterials: physics and engineering explorations. John Wiley & SonsGoogle Scholar
  44. Eremeyev V, Zubov L (2007) On constitutive inequalities in nonlinear theory of elastic shells. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics 87(2):94–101Google Scholar
  45. Eremeyev VA, Lebedev LP (2011) Existence theorems in the linear theory of micropolar shells. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 91(6):468–476Google Scholar
  46. Eremeyev VA, Lebedev LP (2016) Mathematical study of boundary-value problems within the framework of steigmann–ogden model of surface elasticity. Continuum Mechanics and Thermo- dynamics 28(1-2):407–422Google Scholar
  47. Eremeyev VA, Pietraszkiewicz W (2016) Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Mathematics and Mechanics of Solids 21(2):210–221Google Scholar
  48. Eugster S, Hesch C, Betsch P, Glocker C (2014) Director-based beam finite elements relying on the geometrically exact beam theory formulated in skew coordinates. International Journal for Numerical Methods in Engineering 97(2):111–129Google Scholar
  49. Eugster SR, Glocker C (2013) Constraints in structural and rigid body mechanics: a frictional contact problem. Annals of solid and structural mechanics 5(1-2):1–13Google Scholar
  50. Eugster SR, Glocker C (2017) On the notion of stress in classical continuum mechanics. Mathematics and Mechanics p 299Google Scholar
  51. Ferretti M, Piccardo G (2013) Dynamic modeling of taut strings carrying a traveling mass. Continuum Mechanics and Thermodynamics 25(2-4):469–488Google Scholar
  52. Francfort GA, Murat F (1986) Homogenization and optimal bounds in linear elasticity. Archive for Rational mechanics and Analysis 94(4):307–334Google Scholar
  53. Gatt R, Mizzi L, Azzopardi JI, Azzopardi KM, Attard D, Casha A, Briffa J, Grima JN (2015) Hierarchical auxetic mechanical metamaterials. Scientific reports 5:8395Google Scholar
  54. Geers M, Kouznetsova VG, Brekelmans W (2003) Multiscale first-order and second-order computa- tional homogenization of microstructures towards continua. International Journal for Multiscale Computational Engineering 1(4)Google Scholar
  55. Germain P (1973) The method of virtual power in continuum mechanics. part 2: Microstructure. SIAM Journal on Applied Mathematics 25:556–575, DOI: https://doi.org/10.1137/0125053
  56. Gibson LJ, Ashby MF, Karam G, Wegst U, Shercliff H (1995) The mechanical properties of natural materials. ii. microstructures for mechanical efficiency. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences 450(1938):141–162Google Scholar
  57. Giorgio I, Galantucci L, Della Corte A, Del Vescovo D (2015) Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications. International Journal of Applied Electromagnetics and Mechanics 47(4):1051–1084Google Scholar
  58. Giorgio I, Andreaus U, Madeo A (2016a) The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids. Continuum Mechanics and Thermodynamics 28(1-2):21–40Google Scholar
  59. Giorgio I, Andreaus U, Scerrato D, dell’Isola F (2016b) A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomechanics and modeling in mechanobiology 15(5):1325–1343Google Scholar
  60. Giorgio I, Andreaus U, Lekszycki T, Corte AD (2017) The influence of different geometries of matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with voids. Mathematics and Mechanics of Solids 22(5):969–987Google Scholar
  61. Golaszewski M, Grygoruk R, Giorgio I, Laudato M, Di Cosmo F (2018) Metamaterials with relative displacements in their microstructure: technological challenges in 3d printing, experiments and numerical predictions. Continuum Mechanics and Thermodynamics pp 1–20, DOI: https://doi.org/10.1007/s00161-018-0692-0
  62. Grédiac M, Hild F (2012) Full-field measurements and identification in solid mechanics. John Wiley & SonsGoogle Scholar
  63. Grillanda N, Chiozzi A, Bondi F, Tralli A, Manconi F, Stochino F, Cazzani A (2019) Numerical insights on the structural assessment of historical masonry stellar vaults: the case of santa maria del monte in cagliari. Continuum Mechanics and Thermodynamics pp 1–24, DOI: https://doi.org/10.1007/s00161-019-00752-8
  64. Gunenthiram V, Peyre P, Schneider M, Dal M, Coste F, Fabbro R (2017) Analysis of laser–melt pool–powder bed interaction during the selective laser melting of a stainless steel. Journal of Laser Applications 29(2):022,303Google Scholar
  65. Haboudou A, Peyre P, Vannes A (2003) Study of keyhole and melt pool oscillations in dual beam welding of aluminum alloys: effect on porosity formation. In: First International Symposium on High-Power Laser Macroprocessing, International Society for Optics and Photonics, vol 4831, pp 295–301Google Scholar
  66. Heckele M, Schomburg W (2003) Review on micro molding of thermoplastic polymers. Journal of Micromechanics and Microengineering 14(3):R1Google Scholar
  67. Hild F, Roux S (2012a) Comparison of local and global approaches to digital image correlation. Experimental Mechanics 52(9):1503–1519Google Scholar
  68. Hild F, Roux S (2012b) Digital image correlation. In: Rastogi P, Hack E (eds) Optical Methods for Solid Mechanics. A Full-Field Approach, Wiley-VCH, Weinheim (Germany), pp 183–228Google Scholar
  69. Hild F, Raka B, Baudequin M, Roux S, Cantelaube F (2002) Multi-scale displacement field measurements of compressed mineral wool samples by digital image correlation. Appl Optics IP 41(32):6815–6828Google Scholar
  70. Jia H, Ke M, Hao R, Ye Y, Liu F, Liu Z (2010) Subwavelength imaging by a simple planar acoustic superlens. Applied Physics Letters 97(17):173,507Google Scholar
  71. Kadic M, Bückmann T, Stenger N, Thiel M, Wegener M (2012) On the practicability of pentamode mechanical metamaterials. Applied Physics Letters 100(19):191,901Google Scholar
  72. Khakalo S, Niiranen J (2017) Isogeometric analysis of higher-order gradient elasticity by user elements of a commercial finite element software. Computer-Aided Design 82:154–169Google Scholar
  73. Khakalo S, Niiranen J (2018) Form ii of mindlin’s second strain gradient theory of elasticity with a simplification: For materials and structures from nano-to macro-scales. European Journal of Mechanics-A/Solids 71:292–319Google Scholar
  74. Lakes R (1987) Foam structures with a negative poisson’s ratio. Science 235:1038–1041Google Scholar
  75. Lakes R (1993) Materials with structural hierarchy. Nature 361(6412):511Google Scholar
  76. Laudato M, Manzari L, Barchiesi E, Di Cosmo F, Göransson P (2018) First experimental observation of the dynamical behavior of a pantographic metamaterial. Mechanics Research Communications 94:125–127, DOI: https://doi.org/10.1016/j.mechrescom.2018.11.003
  77. Leclerc H, Périé J, Roux S, Hild F (2009) Integrated digital image correlation for the identification of mechanical properties. In: Gagalowicz A, Philips W (eds) Computer Vision/Computer Graphics CollaborationTechniques. MIRAGE 2009, Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, vol 5496, pp 161–171Google Scholar
  78. Lee JH, Singer JP, Thomas EL (2012) Micro-/nanostructured mechanical metamaterials. Advanced materials 24(36):4782–4810Google Scholar
  79. Lekszycki T, dell’Isola F (2012) A mixture model with evolving mass densities for describing synthesis and resorption phenomena in bones reconstructed with bio-resorbable materials. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 92(6):426–444Google Scholar
  80. Liu Y, Greene MS, Chen W, Dikin DA, Liu WK (2013) Computational microstructure characterization and reconstruction for stochastic multiscale material design. Computer-Aided Design 45(1):65–76Google Scholar
  81. Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan CT, Sheng P (2000) Locally resonant sonic materials. science 289(5485):1734–1736Google Scholar
  82. Liu Z, Lee H, Xiong Y, Sun C, Zhang X (2007) Far-field optical hyperlens magnifying sub-diffraction-limited objects. science 315(5819):1686–1686Google Scholar
  83. Luongo A, Zulli D (2012) Dynamic instability of inclined cables under combined wind flow and support motion. Nonlinear Dynamics 67(1):71–87Google Scholar
  84. Luongo A, Zulli D, Piccardo G (2008) Analytical and numerical approaches to nonlinear galloping of internally resonant suspended cables. Journal of Sound and Vibration 315(3):375–393Google Scholar
  85. Madeo A, Lekszycki T, dell’Isola F (2011) A continuum model for the bio-mechanical interactions between living tissue and bio-resorbable graft after bone reconstructive surgery. Comptes Rendus Mécanique 339(10):625–640Google Scholar
  86. Madeo A, George D, Lekszycki T, Nierenberger M, Rémond Y (2012) A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling. Comptes Rendus Mécanique 340(8):575–589Google Scholar
  87. Madou MJ (2011) Manufacturing techniques for microfabrication and nanotechnology, vol 2. CRC pressGoogle Scholar
  88. Maggi A, Li H, Greer JR (2017) Three-dimensional nano-architected scaffolds with tunable stiffness for efficient bone tissue growth. Acta Biomaterialia 63:294–305Google Scholar
  89. Masuzawa T, Fujino M, Kobayashi K, Suzuki T, Kinoshita N (1985) Wire electro-discharge grinding for micro-machining. CIRP Annals 34(1):431–434Google Scholar
  90. Mathieu F, Leclerc H, Hild F, Roux S (2015) Estimation of elastoplastic parameters via weighted FEMU and integrated-DIC. Exp Mech 55(1):105–119Google Scholar
  91. Mindlin RD (1965) Second gradient of strain and surface-tension in linear elasticity. International Journal of Solids and Structures 1(4):417–438Google Scholar
  92. Misra A, Lekszycki T, Giorgio I, Ganzosch G, Müller WH, dell’Isola F (2018) Pantographic metamaterials show atypical Poynting effect reversal. Mechanics Research Communications 89:6–10Google Scholar
  93. Niiranen J, Khakalo S, Balobanov V, Niemi AH (2016) Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems. Computer Methods in Applied Mechanics and Engineering 308:182–211Google Scholar
  94. Niiranen J, Kiendl J, Niemi AH, Reali A (2017) Isogeometric analysis for sixth-order boundary value problems of gradient-elastic kirchhoff plates. Computer Methods in Applied Mechanics and Engineering 316:328–348Google Scholar
  95. Norris AN (2009) Acoustic metafluids. The Journal of the Acoustical Society of America 125(2):839–849Google Scholar
  96. Ok JG, Seok Youn H, Kyu Kwak M, Lee KT, Jae Shin Y, Jay Guo L, Greenwald A, Liu Y (2012) Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Applied Physics Letters 101(22):223,102Google Scholar
  97. Pearton S, Abernathy C, Ren F, Lothian J, Wisk P, Katz A (1993) Dry and wet etching characteristics of inn, aln, and gan deposited by electron cyclotron resonance metalorganic molecular beam epitaxy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11(4):1772–1775Google Scholar
  98. Pendry JB, Holden A, Stewart W, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Physical review letters 76(25):4773Google Scholar
  99. Piccardo G, Ranzi G, Luongo A (2014) A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes. Mathematics and Mechanics of Solids 19(8):900–924Google Scholar
  100. Placidi L, Rosi G, Giorgio I, Madeo A (2014) Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials. Mathematics and Mechanics of Solids 19(5):555–578Google Scholar
  101. Placidi L, Andreaus U, Giorgio I (2017a) Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. Journal of Engineering Mathematics 103(1):1–21Google Scholar
  102. Placidi L, Barchiesi E, Battista A (2017b) An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations. In: Mathematical Modelling in Solid Mechanics, Springer, pp 193–210Google Scholar
  103. Quiligotti S, Maugin GA, dell’Isola F (2002) Wave motions in unbounded poroelastic solids infused with compressible fluids. Zeitschrift für angewandte Mathematik und Physik ZAMP 53(6):1110–1138Google Scholar
  104. Rosi G, Giorgio I, Eremeyev VA (2013) Propagation of linear compression waves through plane interfacial layers and mass adsorption in second gradient fluids. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 93(12):914–927Google Scholar
  105. Rumpf RC, Pazos J, Garcia CR, Ochoa L, Wicker R (2013) 3d printed lattices with spatially variant self-collimation. Progress In Electromagnetics Research 139:1–14Google Scholar
  106. Scerrato D, Giorgio I, Rizzi NL (2016) Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Zeitschrift für angewandte Mathematik und Physik 67(3):53Google Scholar
  107. Seppecher P, Alibert JJ, dell’Isola F (2011) Linear elastic trusses leading to continua with exotic mechanical interactions. Journal of Physics: Conference Series 319(1):012,018Google Scholar
  108. Sutton M (2013) Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation. Appl Mech Rev 65(AMR-13-1009):050,802Google Scholar
  109. Sutton M, Orteu J, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer Science & Business MediaGoogle Scholar
  110. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89Google Scholar
  111. Tomičević Z, Hild F, Roux S (2013) Mechanics-aided digital image correlation. The Journal of Strain Analysis for Engineering Design 48(5):330–343Google Scholar
  112. Turco E, dell’Isola F, Cazzani A, Rizzi NL (2016a) Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Zeitschrift für angewandte Mathematik und Physik 67(4):85Google Scholar
  113. Turco E, Golaszewski M, Cazzani A, Rizzi NL (2016b) Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete lagrangian model. Mechanics Research Communications 76:51–56Google Scholar
  114. Turco E, Giorgio I, Misra A, dell’Isola F (2017a) King post truss as a motif for internal structure of (meta) material with controlled elastic properties. Royal Society open science 4(10):171,153Google Scholar
  115. Turco E, Golaszewski M, Giorgio I, D’Annibale F (2017b) Pantographic lattices with non-orthogonal fibres: Experiments and their numerical simulations. Composites Part B: Engineering 118:1–14Google Scholar
  116. Turco E, Misra A, Pawlikowski M, dell’Isola F, Hild F (2018) Enhanced piola–hencky discrete models for pantographic sheets with pivots without deformation energy: Numerics and experiments. International Journal of Solids and StructuresGoogle Scholar
  117. Vangelatos Z, Komvopoulos K, Grigoropoulos C (2018) Vacancies for controlling the behavior of microstructured three-dimensional mechanical metamaterials. Mathematics and Mechanics of Solids p 1081286518810739Google Scholar
  118. Vangelatos Z, Melissinaki V, Farsari M, Komvopoulos K, Grigoropoulos C (2019) Intertwined microlattices greatly enhance the performance of mechanical metamaterials. Mathematics and Mechanics of Solids p 1081286519848041Google Scholar
  119. Veselago V (1967) Properties of materials having simultaneously negative values of the dielectric and magnetic susceptibilities. Soviet Physics Solid State USSR 8:2854–2856Google Scholar
  120. Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of and µ. Soviet physics uspekhi 10(4):509Google Scholar
  121. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nature materials 14(1):23Google Scholar
  122. Zhang S, Yin L, Fang N (2009) Focusing ultrasound with an acoustic metamaterial network. Physical review letters 102(19):194,301Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Mustafa Erden Yildizdag
    • 1
    • 2
  • Chuong Anthony Tran
    • 2
  • Emilio Barchiesi
    • 2
  • Mario Spagnuolo
    • 2
    Email author
  • Francesco dell’Isola
    • 2
    • 3
  • François Hild
    • 4
  1. 1.Department of Naval Architecture and Ocean EngineeringIstanbul Technical UniversityMaslak, IstanbulTurkey
  2. 2.International Research Center for the Mathematics and Mechanics of Complex SystemsUniversity of L’AquilaL’AquilaItaly
  3. 3.Dipartimento di Ingegneria Civile, Edile-Architettura e AmbientaleUniversità degli Studi dell’AquilaL’AquilaItaly
  4. 4.Laboratoire de Mécanique et Technologie (LMT), ENS Paris-Saclay, CNRSUniversité Paris-SaclayCachan CedexFrance

Personalised recommendations