On the Derivation and Application of a Finite Strain Thermo-viscoelastic Material Model for Rubber Components

  • Jonas SchröderEmail author
  • Alexander Lion
  • Michael Johlitz
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 100)


This contribution deals with a modified material model of the finite thermoviscoelasticity for the efficient calculation of the dissipative self-heating of elastomer components. The occurrence of critical temperatures, which can lead to loss of functionality or component failure, can be identified at an early stage. Here, the focus lies on industrial applicability, which, in addition to calculation time and quality, also includes the experimental effort required to identify the material parameters. This contribution starts with the formulation of a thermomechanically consistent constitutive model. For this purpose, an appropriate description of the kinematics and the derivation of the constitutive relationships is carried out. These are transferred in a suitable way into the form used by the commercial finite element software ABAQUS and implemented as a thermomechanically fully coupled problem. Furthermore, an industrially applied elastomer material is characterised and the model is parameterized in a special method by selecting the potential function. Finally, the validation of the model and its parameterization are carried out by means of experimental component tests.


Finite element implementation Fully coupled Finite thermoviscoelasticity Dissipative heating Thermomechanics Elastomer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abaqus (2002) ABAQUS/CAE 6.14 User’s Manual. Hibbitt, Karlsson & Sorensen, IncorporatedGoogle Scholar
  2. Anand L (1985) Constitutive equations for hot-working of metals. International Journal of Plasticity (3):213–231Google Scholar
  3. Anand L, Ames NM, Srivastava V, Chester SA (2009) A thermo-mechanically coupled theory for large deformations of amorphous polymers. part i: Formulation. International Journal of Plasticity 25(8):1474–1494Google Scholar
  4. Anthony RL, Caston RH, Guth E (1942) Equations of state for natural and synthetic rubber-like materials. i. unaccelerated natural soft rubber. The Journal of Physical Chemistry 46(8):826–840Google Scholar
  5. Arruda EM, Boyce MC, Jayachandran R (1995) Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mechanics of Materials (2-3):193–212Google Scholar
  6. Bröcker C (2013) Materialmodellierung für die simultane Kalt-/Warmumformung auf Basis erweiterter rheologischer Modelle. kassel university press GmbHGoogle Scholar
  7. Bröcker C, Matzenmiller A (2008) Modellierung und simulation thermo-mechanisch gekoppelter umformprozesse. In: Proceedings in Applied Mathematics and Mechanics,Wiley Online Library, vol 8, pp 10,485–10,486Google Scholar
  8. Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Archive for Rational Mechanics and Analysis 13:167–178Google Scholar
  9. Dippel B, Johlitz M, Lion A (2014) Thermo-mechanical couplings in elastomers - experiments and modelling. Journal of Applied Mathematics and Mechanics
  10. Elsner P, Eyerer P, Hirth T (2012) Domininghaus - Kunststoffe: Eigenschaften und Anwendungen. VDI-Buch, Springer Berlin HeidelbergGoogle Scholar
  11. Erbts P, DüSter A (2012) Accelerated staggered coupling schemes for problems of thermoelasticity at finite strains. Computers & Mathematics with Applications 64(8):2408–2430Google Scholar
  12. Flory PJ (1961) Thermodynamic relations for high elastic materials. Transactions of the Faraday Society 57:829–838Google Scholar
  13. Glaser S (1992) Berechnung gekoppelter thermomechanischer Prozesse. Dissertation, Institut für Baumechanik und Numerische Mechanik, Universität Hannover, Bericht-Nr. F88/6Google Scholar
  14. Gough J (1805) A description of a property of caoutchouc, or indian rubber. Memories of the Literacy and Philosophical Society of Manchester 1:288–295Google Scholar
  15. Hamkar AW (2013) Eine iterationsfreie Finite-Elemente Methode im Rahmen der finiten Thermoviskoelastizität. Universitätsbibliothek ClausthalGoogle Scholar
  16. Heimes T (2004) Finite Thermoviskoelastizität. Forschungs- und Seminarbericht aus dem Gebiet Technische Mechanik und Flächentragwerke, Universität der Bundeswehr MünchenGoogle Scholar
  17. Holzapfel GA (2000) Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science. WileyGoogle Scholar
  18. Johlitz M (2015) Zum Alterungsverhalten von Polymeren: Experimentell gestützte, thermochemomechanische Modellbildung und numerische Simulation. Habilitationsschrift Institut für Mechanik an der Universität der Bundeswehr MünchenGoogle Scholar
  19. Joule JP (1859) On some thermo-dynamic properties of solids. Philosophical Transactions of the Royal Society of London 149:91–131Google Scholar
  20. Klauke R (2015) Lebensdauervorhersage mehrachsig belasteter Elastomerbauteile unter besonderer Berücksichtigung rotierender Beanspruchungsrichtungen. Fakultät für Maschinenbau der Technischen Universität Chemnitz, Institut für Mechanik und ThermodynamikGoogle Scholar
  21. Koltzenburg S, Maskos M, Nuyken O (2013) Polymere: Synthese, Eigenschaften und Anwendungen. Springer-VerlagGoogle Scholar
  22. Lejeunes S, Eyheramendy D, Boukamel A, Delattre A, Méo S, Ahose KD (2018) A constitutive multiphysics modeling for nearly incompressible dissipative materials: application to thermo–chemo-mechanical aging of rubbers. Mechanics of Time-Dependent Materials 22(1):51–66Google Scholar
  23. Lion A (2000) Thermomechanik von Elastomeren. Berichte des Instituts für Mechanik der Universität Kassel (Bericht 1/2000)Google Scholar
  24. Lubliner J (1985) A model of rubber viscoelasticity. Mechanics Research Communications 12:93–99Google Scholar
  25. Miehe C (1988) Zur numerischen Behandlung thermomechanischer Prozesse. Dissertation, Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Universität StuttgartGoogle Scholar
  26. Mooney M (1940) A theory of large elastic deformation. Journal of Applied Physics 11:582–592Google Scholar
  27. Mullins L (1948) Effect of stretching on the properties of rubber. Rubber Chemistry and Technology (2):281–300Google Scholar
  28. Naumann C, Ihlemann J (2011) Thermomechanical material behaviour within the concept of representative directions. In: Constitutive Models for Rubber VII, Balkema Leiden, pp 107–112Google Scholar
  29. Payne AR (1962) The dynamic properties of carbon black-loaded natural rubber vulcanizates. part i. Journal of applied polymer science 6(19):57–63Google Scholar
  30. Reese S (2001) Thermomechanische Modellierung gummiartiger Polymerstrukturen. Habilitation, Bericht-Nr. F01/4 des Instituts für Baumechanik undNumerischeMechanik, Universität HannoverGoogle Scholar
  31. Rivlin RS (1948-1951) Large elastic deformations of isotropic materials part:vii. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical SciencesGoogle Scholar
  32. Rivlin RS (1997) Some applications of elasticity theory to rubber engineering. In: Collected papers of R. S. Rivlin, Springer, pp 9–16Google Scholar
  33. Rivlin RS, Saunders DW (1951) Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences 243(865):251–288Google Scholar
  34. Schlanger HP (1983) A one-dimensional numerical model of heat transfer in the process of tire vulcanization. Rubber Chemistry and Technology 56(2):304–321Google Scholar
  35. Schröder J, Parra Pelaez G (2019) Erfassung, simulation und bewertung der thermomechanischen schädigungsmechanismen von elastomerbauteilen unter dynamischen mechanischen beanspruchungen ii. FKM-Abschlussbericht Heft 334(FKM-Vorhaben Nr.603)Google Scholar
  36. Schwarzl FR (2013) Polymermechanik: Struktur und mechanisches Verhalten von Polymeren. Springer-VerlagGoogle Scholar
  37. Shutov AV, Landgraf R, Ihlemann J (2013) An explicit solution for implicit time stepping in multiplicative finite strain viscoelasticity. Comp Meth Appl Mech Engrg 265:213–225Google Scholar
  38. Simo JC, Miehe C (1992) Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation. Computer Methods in Applied Mechanics and Engineering (1):41–104Google Scholar
  39. Simo JC, Taylor RL (1982) Penalty function formulations for incompressible nonlinear elastostatics. Computer Methods in Applied Mechanics and Engineering 35:107–118Google Scholar
  40. Stephan P (2002) Vdi wärmeatlas: Berechnungsblätter für den wärmeübergang. Verein Deutscher IngenieureGoogle Scholar
  41. Tobolsky AV (1967) Mechanische Eigenschaften und Struktur von Polymeren. Berliner UnionGoogle Scholar
  42. Tobolsky AV, Mark HF, Bondi AA, Deanin RD, DuPre DB, Gent AN, Mark H, Peterlin A, Rebenfeld L, Samulski E, et al (1971) Polymer science and materials. Wiley-Interscience New YorkGoogle Scholar
  43. Treloar L (1975) The physics of rubber elasticity. Oxford University Press, USAGoogle Scholar
  44. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society 77(14):3701–3707Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jonas Schröder
    • 1
    Email author
  • Alexander Lion
    • 1
  • Michael Johlitz
  1. 1.Institute of Mechanics, Faculty for Aerospace EngineeringBundeswehr University MunichMunichGermany

Personalised recommendations