The Helmholtz Equation

  • David Colton
  • Rainer Kress
Part of the Applied Mathematical Sciences book series (AMS, volume 93)


Studying an inverse problem always requires a solid knowledge of the theory for the corresponding direct problem. Therefore, the following two chapters of our book are devoted to presenting the foundations of obstacle scattering problems for time-harmonic acoustic waves, i.e., to exterior boundary value problems for the scalar Helmholtz equation. Our aim is to develop the analysis for the direct problems to an extent which is needed in the subsequent chapters on inverse problems.


  1. 14.
    Angell, T.S., Kleinman, R.E., and Hettlich, F.: The resistive and conductive problems for the exterior Helmholtz equation. SIAM J. Appl. Math. 50, 1607–1622 (1990).MathSciNetCrossRefGoogle Scholar
  2. 104.
    Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. SIAM Publications, Philadelphia 2013.CrossRefGoogle Scholar
  3. 165.
    Hadamard, J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Yale University Press, New Haven 1923.zbMATHGoogle Scholar
  4. 224.
    Jones, D.S.: Acoustic and Electromagnetic Waves. Clarendon Press, Oxford 1986.Google Scholar
  5. 230.
    Kellogg, O.D.: Foundations of Potential Theory. Springer, Berlin 1929.CrossRefGoogle Scholar
  6. 268.
    Kress, R.: Linear Integral Equations. 3rd ed, Springer, Berlin 2014.CrossRefGoogle Scholar
  7. 293.
    Lebedev, N.N.: Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs 1965.CrossRefGoogle Scholar
  8. 311.
    Martensen, E.: Potentialtheorie. Teubner-Verlag, Stuttgart 1968.zbMATHGoogle Scholar
  9. 326.
    Morse, P.M., and Ingard, K.U.: Linear acoustic theory. In: Encyclopedia of Physics (Flügge, ed). Springer, Berlin, 1–128 (1961).Google Scholar
  10. 397.
    Sommerfeld, A.: Die Greensche Funktion der Schwingungsgleichung. Jber. Deutsch. Math. Verein. 21, 309–353 (1912).zbMATHGoogle Scholar
  11. 421.
    Werner, P.: Zur mathematischen Theorie akustischer Wellenfelder. Arch. Rational Mech. Anal. 6, 231–260 (1961).CrossRefGoogle Scholar
  12. 428.
    Wilcox, C.H.: A generalization of theorems of Rellich and Atkinson. Proc. Amer. Math. Soc. 7, 271–276 (1956).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • David Colton
    • 1
  • Rainer Kress
    • 2
  1. 1.Department of Mathematical SciencesUniversity of DelawareNewarkUSA
  2. 2.Institut für Numerische und Angewandte MathematikGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations