Advertisement

Towards Ontology Engineering Based on Transformation of Conceptual Models and Spreadsheet Data: A Case Study

  • Nikita O. Dorodnykh
  • Aleksandr Yu. YurinEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1046)

Abstract

The ontology engineering is a complex and time-consuming process. In this regard, methods for automated formation of ontologies based on various information sources (e.g., databases, spreadsheets data, and text documents, etc.) are being actively developed. This paper presents a case study for the domain ontology engineering based on analysis and transformation of conceptual models and spreadsheet data. The analysis of conceptual models, which are serialized using XML, provides the opportunity to develop content ontology design patterns. The specific concepts for filling obtained ontology design patterns are resulted from the transformation of spreadsheet data in the CSV format. In this paper, we present statement of the problem and the approach for its solution. The illustrative example describes ontology engineering for the industrial safety inspection tasks.

Keywords

Ontology engineering Ontology design patterns OWL Conceptual models Spreadsheets Transformations Industrial safety inspection 

Notes

Acknowledgement

The contribution of this work was supported by the Russian Science Foundation under Grant No. 18-71-10001.

References

  1. 1.
    Guarino, N.: Formal ontology in information systems. In: The First International Conference on Formal Ontology in Information Systems (FOIS 1998), vol. 46, pp. 3–15 (1998)Google Scholar
  2. 2.
    Starr, R.R., de Oliveira, J.M.P.: Concept maps as the first step in an ontology construction method. Inf. Syst. 38, 771–783 (2013).  https://doi.org/10.1109/EDOCW.2010.43CrossRefGoogle Scholar
  3. 3.
    Herrero-Zazo, M., Segura-Bedmar, I., Martínez, P.: Conceptual models of drug-drug interactions: a summary of recent efforts. Knowl.-Based Syst. 114, 99–107 (2016).  https://doi.org/10.1016/j.knosys.2016.10.006CrossRefGoogle Scholar
  4. 4.
    Berman, A.F., Dorodnykh, N.O., Nikolaychuk, O.A., Pavlov, N.Y., Yurin, A.Yu.: Fishbone diagrams for the development of knowledge bases. In: The 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2018), pp. 967–972 (2018).  https://doi.org/10.23919/MIPRO.2018.8400177
  5. 5.
    Shigarov, A.O., Mikhailov, A.A.: Rule-based spreadsheet data transformation from arbitrary to relational tables. Inf. Syst. 71, 123–136 (2017).  https://doi.org/10.1016/j.is.2017.08.004CrossRefGoogle Scholar
  6. 6.
    Tijerino, Y.A., Embley, D.W., Lonsdale, D.W., Ding, Y., Nagy, G.: Towards ontology generation from tables. World Wide Web 8(3), 261–285 (2005).  https://doi.org/10.1007/s11280-005-0360-8CrossRefGoogle Scholar
  7. 7.
    Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A.A., Presutti, V.: Ontology Engineering with Ontology Design Patterns: Foundations and Applications. Studies on the Semantic Web. IOS Press/AKA, Amsterdam (2016)Google Scholar
  8. 8.
    Association for ontology design & patterns (ODPA). http://ontologydesignpatterns.org/wiki/ODPA. Accessed 18 Mar 2019
  9. 9.
    Milanović, M., Gašević, D., Giurca, A., Wagner, G., Devedžić, V.: Bridging concrete and abstract syntaxes in model-driven engineering: a case of rule languages. Soft. Pract. Exp. 39(16), 1313–1346 (2009).  https://doi.org/10.1002/spe.938CrossRefGoogle Scholar
  10. 10.
    Zedlitz, J., Luttenberger, N.: Conceptual modelling in UML and OWL-2. Int. J. Adv. Softw. 7(1), 182–196 (2014)Google Scholar
  11. 11.
    Bohring, H., Auer, S.: Mapping XML to OWL ontologies. In: Leipziger Informatik-Tage, vol. 72, pp. 147–156 (2005)Google Scholar
  12. 12.
    Rodrigues, T., Rosa, P., Cardoso, J.: Moving from syntactic to semantic organizations using JXML2OWL. Comput. Ind. 59(8), 808–819 (2008).  https://doi.org/10.1016/j.compind.2008.06.002CrossRefGoogle Scholar
  13. 13.
    O’Connor, M.J., Das, A.K.: Acquiring OWL ontologies from XML documents. In: The 6th International Conference on Knowledge Capture (K-CAP 2011), pp. 17–24 (2011).  https://doi.org/10.1145/1999676.1999681
  14. 14.
    Bedini, I., Matheus, C., Patel-Schneider, P.F., Boran, A., Nguyen, B.: Transforming XML schema to OWL using patterns. In: The 2011 IEEE Fifth International Conference on Semantic Computing, pp. 102–109 (2011).  https://doi.org/10.1109/ICSC.2011.77
  15. 15.
    Gleaning resource descriptions from dialects of languages (GRDDL). https://www.w3.org/TR/grddl/. Accessed 18 Mar 2019
  16. 16.
    Lange, C.: Krextor - an extensible framework for contributing content math to the web of data. In: International Conference on Intelligent Computer Mathematics, pp. 304–306 (2011).  https://doi.org/10.1007/978-3-642-22673-1_29Google Scholar
  17. 17.
    Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between RDF and XML with XSPARQL. J. Data Semant. 1(3), 147–185 (2012).  https://doi.org/10.1007/s13740-012-0008-7CrossRefGoogle Scholar
  18. 18.
    Dorodnykh, N.O.: Web-based software for automating development of knowledge bases on the basis of transformation of conceptual models. Open Semant. Technol. Intell. Syst. 1, 145–150 (2017)Google Scholar
  19. 19.
    Dorodnykh, N.O., Yurin, A.Yu.: A domain-specific language for transformation models. In: CEUR Workshop Proceedings. Information Technologies: Algorithms, Models, Systems (ITAMS 2018), vol. 2221, pp. 70–75 (2018)Google Scholar
  20. 20.
    Mauro, N., Esposito, F., Ferilli, S.: Finding critical cells in web tables with SRL: trying to uncover the devil’s tease. In: Proceedings of the 12th International Conference on Document Analysis and Recognition, pp. 882–886 (2013).  https://doi.org/10.1109/ICDAR.2013.180
  21. 21.
    Adelfio, M., Samet, H.: Schema extraction for tabular data on the web. Proc. VLDB Endow. 6(6), 421–432 (2013).  https://doi.org/10.14778/2536336.2536343CrossRefGoogle Scholar
  22. 22.
    Chen, Z., Cafarella, M.: Integrating spreadsheet data via accurate and low-effort extraction. In: Proceedings of the 20th ACM SIGKDD International Conference Knowledge Discovery and Data Mining, pp. 1126–1135 (2014).  https://doi.org/10.1145/2623330.2623617
  23. 23.
    Embley, D.W., Krishnamoorthy, M.S., Nagy, G., Seth, S.: Converting heterogeneous statistical tables on the web to searchable databases. Int. J. Doc. Anal. Recogn. 19(2), 119–138 (2016).  https://doi.org/10.1007/s10032-016-0259-1CrossRefGoogle Scholar
  24. 24.
    Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: interactive visual specification of data transformation scripts. In: Proceedings of the SIGCHI Conference Human Factors in Computing Systems, pp. 3363–3372 (2011).  https://doi.org/10.1145/1978942.1979444
  25. 25.
    Hung, V., Benatallah, B., Saint-Paul, R.: Spreadsheet-based complex data transformation. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1749–1754 (2011).  https://doi.org/10.1145/2063576.2063829
  26. 26.
    Harris, W., Gulwani, S.: Spreadsheet table transformations from examples. ACM SIGPLAN Not. 46(6), 317–328 (2011).  https://doi.org/10.1145/1993316.1993536CrossRefGoogle Scholar
  27. 27.
    O’Connor, M.J., Halaschek-Wiener, C., Musen, M.A.: Mapping master: a flexible approach for mapping spreadsheets to OWL. In: The Semantic Web – ISWC 2010. LNCS, pp. 194–208 (2010).  https://doi.org/10.1007/978-3-642-17749-1_13Google Scholar
  28. 28.
    Mulwad, V., Finin, T., Joshi, A.: A domain independent framework for extracting linked semantic data from tables. In: Search Computing, pp. 16–33 (2012).  https://doi.org/10.1007/978-3-642-34213-4_2CrossRefGoogle Scholar
  29. 29.
    Da Silva, A.R.: Model-driven engineering: a survey supported by the unified conceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015).  https://doi.org/10.1016/j.cl.2015.06.001CrossRefGoogle Scholar
  30. 30.
    Berman, A.F., Nikolaichuk, O.A., Yurin, A.Y., Kuznetsov, K.A.: Support of decision-making based on a production approach in the performance of an industrial safety review. Chem. Pet. Eng. 50(1–2), 730–738 (2015).  https://doi.org/10.1007/s10556-015-9970-xCrossRefGoogle Scholar
  31. 31.
    Yurin, A.H., Dorodnykh, N.O., Nikolaychuk, O.A., Berman, A.F., Pavlov, A.I.: ISI models, mendeley data, v1 (2019). http://dx.doi.org/10.17632/f9h2t766tk.1
  32. 32.
  33. 33.
    Dorodnykh, N.O., Yurin, A.Yu., Stolbov A.B.: Ontology driven development of rule-based expert systems. In: The 3rd Russian-Pacific Conference on Computer Technology and Applications (RPC 2018), pp. 1–6 (2018).  https://doi.org/10.1109/RPC.2018.8482174
  34. 34.
    Grishenko, M.A., Dorodnykh, N.O., Nikolaychuk, O.A., Yurin, A.Yu.: Designing rule-based expert systems with the aid of the model-driven development approach. Expert Syst. 35(5), 1–23 (2018).  https://doi.org/10.1111/exsy.12291CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Matrosov Institute for System Dynamics and Control TheorySiberian Branch of the Russian Academy of SciencesIrkutskRussia
  2. 2.Irkutsk National Research Technical UniversityIrkutskRussia

Personalised recommendations