Towards Ontology Engineering Based on Transformation of Conceptual Models and Spreadsheet Data: A Case Study
- 263 Downloads
Abstract
The ontology engineering is a complex and time-consuming process. In this regard, methods for automated formation of ontologies based on various information sources (e.g., databases, spreadsheets data, and text documents, etc.) are being actively developed. This paper presents a case study for the domain ontology engineering based on analysis and transformation of conceptual models and spreadsheet data. The analysis of conceptual models, which are serialized using XML, provides the opportunity to develop content ontology design patterns. The specific concepts for filling obtained ontology design patterns are resulted from the transformation of spreadsheet data in the CSV format. In this paper, we present statement of the problem and the approach for its solution. The illustrative example describes ontology engineering for the industrial safety inspection tasks.
Keywords
Ontology engineering Ontology design patterns OWL Conceptual models Spreadsheets Transformations Industrial safety inspectionNotes
Acknowledgement
The contribution of this work was supported by the Russian Science Foundation under Grant No. 18-71-10001.
References
- 1.Guarino, N.: Formal ontology in information systems. In: The First International Conference on Formal Ontology in Information Systems (FOIS 1998), vol. 46, pp. 3–15 (1998)Google Scholar
- 2.Starr, R.R., de Oliveira, J.M.P.: Concept maps as the first step in an ontology construction method. Inf. Syst. 38, 771–783 (2013). https://doi.org/10.1109/EDOCW.2010.43CrossRefGoogle Scholar
- 3.Herrero-Zazo, M., Segura-Bedmar, I., Martínez, P.: Conceptual models of drug-drug interactions: a summary of recent efforts. Knowl.-Based Syst. 114, 99–107 (2016). https://doi.org/10.1016/j.knosys.2016.10.006CrossRefGoogle Scholar
- 4.Berman, A.F., Dorodnykh, N.O., Nikolaychuk, O.A., Pavlov, N.Y., Yurin, A.Yu.: Fishbone diagrams for the development of knowledge bases. In: The 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2018), pp. 967–972 (2018). https://doi.org/10.23919/MIPRO.2018.8400177
- 5.Shigarov, A.O., Mikhailov, A.A.: Rule-based spreadsheet data transformation from arbitrary to relational tables. Inf. Syst. 71, 123–136 (2017). https://doi.org/10.1016/j.is.2017.08.004CrossRefGoogle Scholar
- 6.Tijerino, Y.A., Embley, D.W., Lonsdale, D.W., Ding, Y., Nagy, G.: Towards ontology generation from tables. World Wide Web 8(3), 261–285 (2005). https://doi.org/10.1007/s11280-005-0360-8CrossRefGoogle Scholar
- 7.Hitzler, P., Gangemi, A., Janowicz, K., Krisnadhi, A.A., Presutti, V.: Ontology Engineering with Ontology Design Patterns: Foundations and Applications. Studies on the Semantic Web. IOS Press/AKA, Amsterdam (2016)Google Scholar
- 8.Association for ontology design & patterns (ODPA). http://ontologydesignpatterns.org/wiki/ODPA. Accessed 18 Mar 2019
- 9.Milanović, M., Gašević, D., Giurca, A., Wagner, G., Devedžić, V.: Bridging concrete and abstract syntaxes in model-driven engineering: a case of rule languages. Soft. Pract. Exp. 39(16), 1313–1346 (2009). https://doi.org/10.1002/spe.938CrossRefGoogle Scholar
- 10.Zedlitz, J., Luttenberger, N.: Conceptual modelling in UML and OWL-2. Int. J. Adv. Softw. 7(1), 182–196 (2014)Google Scholar
- 11.Bohring, H., Auer, S.: Mapping XML to OWL ontologies. In: Leipziger Informatik-Tage, vol. 72, pp. 147–156 (2005)Google Scholar
- 12.Rodrigues, T., Rosa, P., Cardoso, J.: Moving from syntactic to semantic organizations using JXML2OWL. Comput. Ind. 59(8), 808–819 (2008). https://doi.org/10.1016/j.compind.2008.06.002CrossRefGoogle Scholar
- 13.O’Connor, M.J., Das, A.K.: Acquiring OWL ontologies from XML documents. In: The 6th International Conference on Knowledge Capture (K-CAP 2011), pp. 17–24 (2011). https://doi.org/10.1145/1999676.1999681
- 14.Bedini, I., Matheus, C., Patel-Schneider, P.F., Boran, A., Nguyen, B.: Transforming XML schema to OWL using patterns. In: The 2011 IEEE Fifth International Conference on Semantic Computing, pp. 102–109 (2011). https://doi.org/10.1109/ICSC.2011.77
- 15.Gleaning resource descriptions from dialects of languages (GRDDL). https://www.w3.org/TR/grddl/. Accessed 18 Mar 2019
- 16.Lange, C.: Krextor - an extensible framework for contributing content math to the web of data. In: International Conference on Intelligent Computer Mathematics, pp. 304–306 (2011). https://doi.org/10.1007/978-3-642-22673-1_29Google Scholar
- 17.Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between RDF and XML with XSPARQL. J. Data Semant. 1(3), 147–185 (2012). https://doi.org/10.1007/s13740-012-0008-7CrossRefGoogle Scholar
- 18.Dorodnykh, N.O.: Web-based software for automating development of knowledge bases on the basis of transformation of conceptual models. Open Semant. Technol. Intell. Syst. 1, 145–150 (2017)Google Scholar
- 19.Dorodnykh, N.O., Yurin, A.Yu.: A domain-specific language for transformation models. In: CEUR Workshop Proceedings. Information Technologies: Algorithms, Models, Systems (ITAMS 2018), vol. 2221, pp. 70–75 (2018)Google Scholar
- 20.Mauro, N., Esposito, F., Ferilli, S.: Finding critical cells in web tables with SRL: trying to uncover the devil’s tease. In: Proceedings of the 12th International Conference on Document Analysis and Recognition, pp. 882–886 (2013). https://doi.org/10.1109/ICDAR.2013.180
- 21.Adelfio, M., Samet, H.: Schema extraction for tabular data on the web. Proc. VLDB Endow. 6(6), 421–432 (2013). https://doi.org/10.14778/2536336.2536343CrossRefGoogle Scholar
- 22.Chen, Z., Cafarella, M.: Integrating spreadsheet data via accurate and low-effort extraction. In: Proceedings of the 20th ACM SIGKDD International Conference Knowledge Discovery and Data Mining, pp. 1126–1135 (2014). https://doi.org/10.1145/2623330.2623617
- 23.Embley, D.W., Krishnamoorthy, M.S., Nagy, G., Seth, S.: Converting heterogeneous statistical tables on the web to searchable databases. Int. J. Doc. Anal. Recogn. 19(2), 119–138 (2016). https://doi.org/10.1007/s10032-016-0259-1CrossRefGoogle Scholar
- 24.Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: interactive visual specification of data transformation scripts. In: Proceedings of the SIGCHI Conference Human Factors in Computing Systems, pp. 3363–3372 (2011). https://doi.org/10.1145/1978942.1979444
- 25.Hung, V., Benatallah, B., Saint-Paul, R.: Spreadsheet-based complex data transformation. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1749–1754 (2011). https://doi.org/10.1145/2063576.2063829
- 26.Harris, W., Gulwani, S.: Spreadsheet table transformations from examples. ACM SIGPLAN Not. 46(6), 317–328 (2011). https://doi.org/10.1145/1993316.1993536CrossRefGoogle Scholar
- 27.O’Connor, M.J., Halaschek-Wiener, C., Musen, M.A.: Mapping master: a flexible approach for mapping spreadsheets to OWL. In: The Semantic Web – ISWC 2010. LNCS, pp. 194–208 (2010). https://doi.org/10.1007/978-3-642-17749-1_13Google Scholar
- 28.Mulwad, V., Finin, T., Joshi, A.: A domain independent framework for extracting linked semantic data from tables. In: Search Computing, pp. 16–33 (2012). https://doi.org/10.1007/978-3-642-34213-4_2CrossRefGoogle Scholar
- 29.Da Silva, A.R.: Model-driven engineering: a survey supported by the unified conceptual model. Comput. Lang. Syst. Struct. 43, 139–155 (2015). https://doi.org/10.1016/j.cl.2015.06.001CrossRefGoogle Scholar
- 30.Berman, A.F., Nikolaichuk, O.A., Yurin, A.Y., Kuznetsov, K.A.: Support of decision-making based on a production approach in the performance of an industrial safety review. Chem. Pet. Eng. 50(1–2), 730–738 (2015). https://doi.org/10.1007/s10556-015-9970-xCrossRefGoogle Scholar
- 31.Yurin, A.H., Dorodnykh, N.O., Nikolaychuk, O.A., Berman, A.F., Pavlov, A.I.: ISI models, mendeley data, v1 (2019). http://dx.doi.org/10.17632/f9h2t766tk.1
- 32.
- 33.Dorodnykh, N.O., Yurin, A.Yu., Stolbov A.B.: Ontology driven development of rule-based expert systems. In: The 3rd Russian-Pacific Conference on Computer Technology and Applications (RPC 2018), pp. 1–6 (2018). https://doi.org/10.1109/RPC.2018.8482174
- 34.Grishenko, M.A., Dorodnykh, N.O., Nikolaychuk, O.A., Yurin, A.Yu.: Designing rule-based expert systems with the aid of the model-driven development approach. Expert Syst. 35(5), 1–23 (2018). https://doi.org/10.1111/exsy.12291CrossRefGoogle Scholar