Advertisement

The Logical Path to Autonomous Cyber-Physical Systems

(Invited Paper)
  • André PlatzerEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11785)

Abstract

Autonomous cyber-physical systems are systems that combine the physics of motion with advanced cyber algorithms to act on their own without close human supervision. The present consensus is that reasonable levels of autonomy, such as for self-driving cars or autonomous drones, can only be reached with the help of artificial intelligence and machine learning algorithms that cope with the uncertainties of the real world. That makes safety assurance even more challenging than it already is in cyber-physical systems (CPSs) with classically programmed control, precisely because AI techniques are lauded for their flexibility in handling unpredictable situations, but are themselves harder to predict. This paper identifies the logical path toward autonomous cyber-physical systems in multiple steps. First, differential dynamic logic ( Open image in new window ) provides a logical foundation for developing cyber-physical system models with the mathematical rigor that their safety-critical nature demands. Then, its ModelPlex technique provides a logically correct way to tame the subtle relationship of CPS models to CPS implementations. Finally, the resulting logical monitor conditions can then be exploited to safeguard the decisions of learning agents, guide the optimization of learning processes, and resolve the nondeterminism frequently found in verification models. Overall, logic leads the way in combining the best of both worlds: the strong predictions that formal verification techniques provide alongside the strong flexibility that the use of AI provides.

Keywords

Autonomous cyber-physical systems Safe AI Hybrid systems Differential dynamic logic Formal verification Runtime verification 

References

  1. 1.
    Alshiekh, M., Bloem, R., Ehlers, R., Könighofer, B., Niekum, S., Topcu, U.: Safe reinforcement learning via shielding. In: McIlraith, Weinberger [22]Google Scholar
  2. 2.
    Alur, R.: Formal verification of hybrid systems. In: Chakraborty, S., Jerraya, A., Baruah, S.K., Fischmeister, S. (eds.) EMSOFT, pp. 273–278. ACM, New York (2011).  https://doi.org/10.1145/2038642.2038685
  3. 3.
    Bohrer, B., Rahli, V., Vukotic, I., Völp, M., Platzer, A.: Formally verified differential dynamic logic. In: Bertot, Y., Vafeiadis, V. (eds.) Certified Programs and Proofs - 6th ACM SIGPLAN Conference, CPP 2017, Paris, France, 16–17 January 2017, pp. 208–221. ACM, New York (2017).  https://doi.org/10.1145/3018610.3018616
  4. 4.
    Bohrer, B., Tan, Y.K., Mitsch, S., Myreen, M.O., Platzer, A.: VeriPhy: verified controller executables from verified cyber-physical system models. In: Grossman, D. (ed.) Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2018, pp. 617–630. ACM (2018).  https://doi.org/10.1145/3192366.3192406
  5. 5.
    Bohrer, B., Tan, Y.K., Mitsch, S., Sogokon, A., Platzer, A.: A formal safety net for waypoint following in ground robots. IEEE Robot. Autom. Lett. 4(3), 2910–2917 (2019).  https://doi.org/10.1109/LRA.2019.2923099CrossRefGoogle Scholar
  6. 6.
    Collins, P.: Optimal semicomputable approximations to reachable and invariant sets. Theory Comput. Syst. 41(1), 33–48 (2007).  https://doi.org/10.1007/s00224-006-1338-3MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Descartes, R.: Meditationes de prima philosophia, in qua Dei existentia et animae immortalitas demonstratur (1641)Google Scholar
  8. 8.
    Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid systems. Handbook of Model Checking, pp. 1047–1110. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-10575-8_30CrossRefzbMATHGoogle Scholar
  9. 9.
    Dreossi, T., Donzé, A., Seshia, S.A.: Compositional falsification of cyber-physical systems with machine learning components. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 357–372. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57288-8_26CrossRefGoogle Scholar
  10. 10.
    Dvijotham, K., et al.: Training verified learners with learned verifiers. CoRR abs/1805.10265 (2018)Google Scholar
  11. 11.
    Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22110-1_30CrossRefGoogle Scholar
  12. 12.
    Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21401-6_36CrossRefGoogle Scholar
  13. 13.
    Fulton, N., Platzer, A.: Safe AI for CPS. In: IEEE International Test Conference, ITC 2018, Phoenix, AZ, USA, October 29–November 1 2018, pp. 1–7. IEEE (2018).  https://doi.org/10.1109/TEST.2018.8624774
  14. 14.
    Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward safe control through proof and learning. In: McIlraith, Weinberger [22], pp. 6485–6492. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17376
  15. 15.
    Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 413–430. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-17462-0_28CrossRefGoogle Scholar
  16. 16.
    Gillula, J.H., Tomlin, C.J.: Guaranteed safe online learning via reachability: tracking a ground target using a quadrotor. In: IEEE International Conference on Robotics and Automation, ICRA 2012, St. Paul, Minnesota, USA, 14–18 May 2012, pp. 2723–2730. IEEE (2012).  https://doi.org/10.1109/ICRA.2012.6225136
  17. 17.
    Henzinger, T.A., Sifakis, J.: The discipline of embedded systems design. Computer 40(10), 32–40 (2007).  https://doi.org/10.1109/MC.2007.364CrossRefGoogle Scholar
  18. 18.
    Jeannin, J., et al.: A formally verified hybrid system for safe advisories in the next-generation airborne collision avoidance system. STTT 19(6), 717–741 (2017).  https://doi.org/10.1007/s10009-016-0434-1CrossRefGoogle Scholar
  19. 19.
    Larsen, K.G.: Verification and performance analysis for embedded systems. In: Chin, W., Qin, S. (eds.) TASE 2009, Third IEEE International Symposium on Theoretical Aspects of Software Engineering, Tianjin, China, 29–31 July 2009, pp. 3–4. IEEE Computer Society (2009).  https://doi.org/10.1109/TASE.2009.66
  20. 20.
    2012 27th Annual IEEE Symposium on Logic in Computer Science (LICS). IEEE, Los Alamitos (2012)Google Scholar
  21. 21.
    Martins, J., Platzer, A., Leite, J.: Dynamic doxastic differential dynamic logic for belief-aware cyber-physical systems. In: Cerrito, S., Popescu, A. (eds.) TABLEAUX. LNCS, vol. 11714. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-29026-9_24Google Scholar
  22. 22.
    McIlraith, S.A., Weinberger, K.Q. (eds.): Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, 2–7 February 2018. AAAI Press (2018)Google Scholar
  23. 23.
    Mitsch, S., Ghorbal, K., Vogelbacher, D., Platzer, A.: Formal verification of obstacle avoidance and navigation of ground robots. Int. J. Robot. Res. 36(12), 1312–1340 (2017).  https://doi.org/10.1177/0278364917733549CrossRefGoogle Scholar
  24. 24.
    Mitsch, S., Platzer, A.: ModelPlex: verified runtime validation of verified cyberphysical system models. Form. Methods Syst. Des. 49(1–2), 33–74 (2016).  https://doi.org/10.1007/s10703-016-0241-zCrossRefzbMATHGoogle Scholar
  25. 25.
    Mitsch, S., Platzer, A.: Verified runtime validation for partially observable hybrid systems. CoRR abs/1811.06502 (2018). http://arxiv.org/abs/1811.06502
  26. 26.
    Nerode, A.: Logic and control. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 585–597. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-73001-9_61CrossRefzbMATHGoogle Scholar
  27. 27.
    Paden, B., Cáp, M., Yong, S.Z., Yershov, D.S., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016).  https://doi.org/10.1109/TIV.2016.2578706CrossRefGoogle Scholar
  28. 28.
    Pappas, G.J.: Wireless control networks: modeling, synthesis, robustness, security. In: Caccamo, M., Frazzoli, E., Grosu, R. (eds.) HSCC, pp. 1–2. ACM, New York (2011).  https://doi.org/10.1145/1967701.1967703
  29. 29.
    Pei, K., Cao, Y., Yang, J., Jana, S.: Towards practical verification of machine learning: the case of computer vision systems. CoRR abs/1712.01785 (2017)Google Scholar
  30. 30.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41(2), 143–189 (2008).  https://doi.org/10.1007/s10817-008-9103-8MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Platzer, A.: Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics, vol. 1. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14509-4CrossRefzbMATHGoogle Scholar
  32. 32.
    Platzer, A.: The complete proof theory of hybrid systems. In: LICS [20], pp. 541–550.  https://doi.org/10.1109/LICS.2012.64
  33. 33.
    Platzer, A.: Logics of dynamical systems. In: LICS [20], pp. 13–24.  https://doi.org/10.1109/LICS.2012.13
  34. 34.
    Platzer, A.: Logic & proofs for cyber-physical systems. In: Olivetti, N., Tiwari, A. (eds.) IJCAR. LNCS, vol. 9706, pp. 15–21. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-40229-1_3CrossRefGoogle Scholar
  35. 35.
    Platzer, A.: A complete uniform substitution calculus for dierential dynamic logic. J. Autom. Reasoning 59(2), 219–265 (2017).  https://doi.org/10.1007/s10817-016-9385-1CrossRefzbMATHGoogle Scholar
  36. 36.
    Platzer, A.: Logical Foundations of Cyber-Physical Systems. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-63588-0CrossRefzbMATHGoogle Scholar
  37. 37.
    Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model checking. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 473–486. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71493-4_37CrossRefzbMATHGoogle Scholar
  38. 38.
    Quesel, J.D., Mitsch, S., Loos, S., Aréchiga, N., Platzer, A.: How to model and prove hybrid systems with KeYmaera: a tutorial on safety. STTT 18(1), 67–91 (2016).  https://doi.org/10.1007/s10009-015-0367-0CrossRefGoogle Scholar
  39. 39.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning. The MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  40. 40.
    Tiwari, A.: Logic in software, dynamical and biological systems. In: LICS, pp. 9–10. IEEE Computer Society (2011).  https://doi.org/10.1109/LICS.2011.20
  41. 41.
    Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to simulink/stateflow verification. Form. Methods Syst. Des. 43(2), 338–367 (2013).  https://doi.org/10.1007/s10703-013-0195-3CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Computer Science DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations