TabbyXL: Rule-Based Spreadsheet Data Extraction and Transformation

  • Alexey ShigarovEmail author
  • Vasiliy Khristyuk
  • Andrey Mikhailov
  • Viacheslav Paramonov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1078)


This paper presents an approach to rule-based spreadsheet data extraction and transformation. We determine a table object model and domain-specific language of table analysis and interpretation rules. In contrast to the existing data transformation languages, we draw up this process as consecutive steps: role analysis, structural analysis, and interpretation. To the best of our knowledge, there are no languages for expressing rules for transforming tabular data into the relational form in terms of the table understanding. We also consider a tool for transforming spreadsheet data from arbitrary to relational tables. The performance evaluation has been done automatically for both (role and structural) stages of table analysis with the prepared ground-truth data. It shows high F-score from 95.82% to 99.04% for different recovered items in the existing dataset of 200 arbitrary tables of the same genre (government statistics).


Data extraction Data transformation Table analysis Rule-based programming Spreadsheet 



This work is supported by the Russian Science Foundation under Grant No.: 18-71-10001.


  1. 1.
    Astrakhantsev, N., Turdakov, D., Vassilieva, N.: Semi-automatic data extraction from tables. In: Selected Papers of the 15th All-Russian Scientific Conference on Digital Libraries: Advanced Methods and Technologies, Digital Collections, pp. 14–20 (2013)Google Scholar
  2. 2.
    Barik, T., Lubick, K., Smith, J., Slankas, J., Murphy-Hill, E.: Fuse: a reproducible, extendable, internet-scale corpus of spreadsheets. In: Proceedings of the 12th Working Conference on Mining Software Repositories, pp. 486–489. IEEE Press (2015).
  3. 3.
    Barowy, D.W., Gulwani, S., Hart, T., Zorn, B.: FlashRelate: extracting relational data from semi-structured spreadsheets using examples. SIGPLAN Not. 50(6), 218–228 (2015). Scholar
  4. 4.
    Cao, T.D., Manolescu, I., Tannier, X.: Extracting linked data from statistic spreadsheets. In: Proceedings of the International Workshop on Semantic Big Data, pp. 5:1–5:5 (2017).
  5. 5.
    Chen, Z.: Information extraction on para-relational data. Ph.D. thesis, University of Michigan, US (2016)Google Scholar
  6. 6.
    Chen, Z., Cafarella, M.: Automatic web spreadsheet data extraction. In: Proceedings of the 3rd International Workshop on Semantic Search Over the Web, pp. 1:1–1:8 (2013).
  7. 7.
    Chen, Z., et al.: Spreadsheet property detection with rule-assisted active learning. Technical report CSE-TR-601-16 (2016).
  8. 8.
    Cunha, J., Erwig, M., Mendes, J., Saraiva, J.: Model inference for spreadsheets. Autom. Softw. Eng. 23(3), 361–392 (2016). Scholar
  9. 9.
    Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: Spreadsheet engineering. In: Zsók, V., Horváth, Z., Csató, L. (eds.) CEFP 2013. LNCS, vol. 8606, pp. 246–299. Springer, Cham (2015). Scholar
  10. 10.
    Cunha, J., Saraiva, J.a., Visser, J.: From spreadsheets to relational databases and back. In: Proceedings of the ACM SIGPLAN Workshop Partial Evaluation and Program Manipulation, pp. 179–188 (2009).
  11. 11.
    Dou, W., Xu, C., Cheung, S.C., Wei, J.: CACheck: detecting and repairing cell arrays in spreadsheets. IEEE Trans. Software Eng. 43(3), 226–251 (2017). Scholar
  12. 12.
    Eberius, J., Werner, C., Thiele, M., Braunschweig, K., Dannecker, L., Lehner, W.: DeExcelerator: a framework for extracting relational data from partially structured documents. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management, pp. 2477–2480 (2013).
  13. 13.
    Embley, D.W., Krishnamoorthy, M.S., Nagy, G., Seth, S.: Converting heterogeneous statistical tables on the web to searchable databases. IJDAR 19(2), 119–138 (2016). Scholar
  14. 14.
    Ermilov, I., Ngomo, A.-C.N.: TAIPAN: automatic property mapping for tabular data. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 163–179. Springer, Cham (2016). Scholar
  15. 15.
    Fiorelli, M., Lorenzetti, T., Pazienza, M.T., Stellato, A., Turbati, A.: Sheet2RDF: a flexible and dynamic spreadsheet import&lifting framework for RDF. In: Ali, M., Kwon, Y., Lee, C.H., Kim, J., Kim, Y. (eds.) IEA/AIE 2015. LNCS, vol. 9101, pp. 131–140. Springer, Cham (2015). Scholar
  16. 16.
    Galkin, M., Mouromtsev, D., Auer, S.: Identifying web tables: supporting a neglected type of content on the web. In: Klinov, P., Mouromtsev, D. (eds.) KESW 2015. CCIS, vol. 518, pp. 48–62. Springer, Cham (2015). Scholar
  17. 17.
    Gulwani, S., Harris, W.R., Singh, R.: Spreadsheet data manipulation using examples. Commun. ACM 55(8), 97–105 (2012). Scholar
  18. 18.
    Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: RDF123: from spreadsheets to RDF. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 451–466. Springer, Heidelberg (2008). Scholar
  19. 19.
    Harris, W.R., Gulwani, S.: Spreadsheet table transformations from examples. SIGPLAN Not. 46(6), 317–328 (2011). Scholar
  20. 20.
    Hung, V., Benatallah, B., Saint-Paul, R.: Spreadsheet-based complex data transformation. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 1749–1754 (2011).
  21. 21.
    Hurst, M.: Layout and language: challenges for table understanding on the web. In: Proceedings of the 1st International Workshop on Web Document Analysis, pp. 27–30 (2001)Google Scholar
  22. 22.
    Jin, Z., Anderson, M.R., Cafarella, M., Jagadish, H.V.: Foofah: transforming data by example. In: Proceedings of the ACM International Conference on Management of Data, pp. 683–698 (2017).
  23. 23.
    Koci, E., Thiele, M., Lehner, W., Romero, O.: Table recognition in spreadsheets via a graph representation. In: 13th IAPR International Workshop on Document Analysis Systems, pp. 139–144 (2018).
  24. 24.
    Koci, E., Thiele, M., Romero, O., Lehner, W.: A machine learning approach for layout inference in spreadsheets. In: Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, pp. 77–88 (2016).
  25. 25.
    Koci, E., Thiele, M., Romero, O., Lehner, W.: Table identification and reconstruction in spreadsheets. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 527–541. Springer, Cham (2017). Scholar
  26. 26.
    Kolb, S., Paramonov, S., Guns, T., De Raedt, L.: Learning constraints in spreadsheets and tabular data. Mach. Learn. 106(9), 1441–1468 (2017). Scholar
  27. 27.
    Langegger, A., Wöß, W.: XLWrap – querying and integrating arbitrary spreadsheets with SPARQL. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 359–374. Springer, Heidelberg (2009). Scholar
  28. 28.
    Mitlöhner, J., Neumaier, S., Umbrich, J., Polleres, A.: Characteristics of open data CSV files. In: 2nd International Conference on Open and Big Data, pp. 72–79 (2016).
  29. 29.
    Mulwad, V., Finin, T., Joshi, A.: A domain independent framework for extracting linked semantic data from tables. In: Ceri, S., Brambilla, M. (eds.) Search Computing. LNCS, vol. 7538, pp. 16–33. Springer, Heidelberg (2012). Scholar
  30. 30.
    Nagy, G.: TANGO-DocLab web tables from international statistical sites (Troy\(\_\)200), 1, ID: Troy\(\_\)200\(\_\)1 (2016).
  31. 31.
    O’Connor, M.J., Halaschek-Wiener, C., Musen, M.A.: Mapping master: a flexible approach for mapping spreadsheets to OWL. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 194–208. Springer, Heidelberg (2010). Scholar
  32. 32.
    Shigarov, A., Altaev, A., Mikhailov, A., Paramonov, V., Cherkashin, E.: TabbyPDF: web-based system for PDF table extraction. In: Damaševičius, R., Vasiljevienė, G. (eds.) ICIST 2018. CCIS, vol. 920, pp. 257–269. Springer, Cham (2018). Scholar
  33. 33.
    Shigarov, A.: Rule-based table analysis and interpretation. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2015. CCIS, vol. 538, pp. 175–186. Springer, Cham (2015). Scholar
  34. 34.
    Shigarov, A.: Table understanding using a rule engine. Expert Syst. Appl. 42(2), 929–937 (2015). Scholar
  35. 35.
    Shigarov, A., Khristyuk, V.: TabbyXL2: experiment data. Mendeley Data, v2 (2018).
  36. 36.
    Shigarov, A., Mikhailov, A., Altaev, A.: Configurable table structure recognition in untagged PDF documents. In: Proceedings of the ACM Symposium on Document Engineering, pp. 119–122 (2016).
  37. 37.
    Shigarov, A.O., Paramonov, V.V., Belykh, P.V., Bondarev, A.I.: Rule-based canonicalization of arbitrary tables in spreadsheets. In: Dregvaite, G., Damasevicius, R. (eds.) ICIST 2016. CCIS, vol. 639, pp. 78–91. Springer, Cham (2016). Scholar
  38. 38.
    Shigarov, A.O., Mikhailov, A.A.: Rule-based spreadsheet data transformation from arbitrary to relational tables. Inf. Syst. 71, 123–136 (2017). Scholar
  39. 39.
    de Vos, M., Wielemaker, J., Rijgersberg, H., Schreiber, G., Wielinga, B., Top, J.: Combining information on structure and content to automatically annotate natural science spreadsheets. Int. J. Hum. Comput. Stud. 103, 63–76 (2017). Scholar
  40. 40.
    Wang, X.: Tabular abstraction, editing, and formatting. Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada (1996)Google Scholar
  41. 41.
    Yang, S., Guo, J., Wei, R.: Semantic interoperability with heterogeneous information systems on the internet through automatic tabular document exchange. Inf. Syst. 69, 195–217 (2017). Scholar
  42. 42.
    Yang, S., Wei, R., Shigarov, A.: Semantic interoperability for electronic business through a novel cross-context semantic document exchange approach. In: Proceedings of the ACM Symposium on Document Engineering, pp. 28:1–28:10 (2018).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexey Shigarov
    • 1
    • 2
    Email author
  • Vasiliy Khristyuk
    • 1
  • Andrey Mikhailov
    • 1
  • Viacheslav Paramonov
    • 1
    • 2
  1. 1.Matrosov Institute for System Dynamics and Control Theory of SB RASIrkutskRussia
  2. 2.Institute of Mathematics, Economics and InformaticsIrkutsk State UniversityIrkutskRussia

Personalised recommendations