Literature Review and Preliminaries

  • Frank Xing
  • Erik Cambria
  • Roy Welsch
Part of the Socio-Affective Computing book series (SAC, volume 9)


This chapter reviews the text mining approaches employed and the problem formalization of stock market prediction by previous studies. A fine-grained categorization of text source is provided. The basic concepts and preliminaries of asset returns and portfolio optimization techniques are given in this chapter as well. The Markowitz model and the Black-Litterman model are the roots that connect financial variables with semantic modeling and sentiment analysis.


Stock market prediction Text mining Trading strategies The Markowitz model The Black-Litterman model 


  1. 2.
    A. Ang, Asset Management: A Systematic Approach to Factor Investing (Oxford University Press, Oxford, 2014)CrossRefGoogle Scholar
  2. 3.
    W. Antweiler, M.Z. Frank, Is all that talk just noise? The information content of internet stock message boards. J. Financ. 59(3), 1259–1294 (2004)Google Scholar
  3. 9.
    T. Bao, C. Diks, H. Li, A generalized capm model with asymmetric power distributed errors with an application to portfolio construction. Econ. Model. 68, 611–621 (2018)CrossRefGoogle Scholar
  4. 14.
    F. Black, R. Litterman, Asset allocation: combining investor view with market equilibrium. J. Fixed Income 1, 7–18 (1991)CrossRefGoogle Scholar
  5. 19.
    J. Bollen, H. Mao, X. Zeng, Twitter mood predicts the stock market. J. Comput. Sci. 2(1), 1–8 (2011)CrossRefGoogle Scholar
  6. 32.
    S.W. Chan, J. Franklin, A text-based decision support system for financial sequence prediction. Decis. Support. Syst. 52(1), 189–198 (2011)CrossRefGoogle Scholar
  7. 35.
    H. Choi, H. Varian, Predicting the present with Google trends. Econ. Rec. 88(1), 2–9 (2012)CrossRefGoogle Scholar
  8. 38.
    G.P.E. Clarkson, A model of the trust investment process, in Computers and Thought (McGraw-Hill, New York, 1963), pp. 347–374Google Scholar
  9. 41.
    Z. Da, Q. Liu, E. Schaumburg, Decomposing short-term return reversal. Technical Report Staff Report no. 513, Federal Reserve Bank of New York, 2011Google Scholar
  10. 42.
    S.R. Das, M.Y. Chen, Yahoo! for Amazon: sentiment extraction from small talk on the web. Manag. Sci. 53(9), 1375–1388 (2007)CrossRefGoogle Scholar
  11. 49.
    X. Ding, Y. Zhang, T. Liu, J. Duan, Deep learning for event-driven stock prediction, in International Joint Conference on Artificial Intelligence (IJCAI), 2015Google Scholar
  12. 53.
    I. Evstigneev, T. Hens, K.R. Schenk-Hoppe (eds.), Mathematical Financial Economics: A Basic Introduction (Springer, New York, 2015)Google Scholar
  13. 62.
    G.P.C. Fung, J.X. Yu, W. Lam, Stock prediction: integrating text mining approach using real-time news, in 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, Proceedings, 2003, pp. 395–402Google Scholar
  14. 68.
    S.S. Groth, J. Muntermann, An intraday market risk management approach based on textual analysis. Decis. Support. Syst. 50(4), 680–691 (2011)CrossRefGoogle Scholar
  15. 71.
    J. Hawley, J. Lukomnik, The purpose of asset management. Technical report, Pension Insurance Corporation, 2018Google Scholar
  16. 79.
    R.J. Hyndman, A.B. Koehler, Another look at measures of forecast accuracy. Int. J. Forecast. 22(4), 679–688 (2006)CrossRefGoogle Scholar
  17. 86.
    B.S. Kumar, V. Ravi, A survey of the applications of text mining in financial domain. Knowl.-Based Syst. 114, 128–147 (2016)CrossRefGoogle Scholar
  18. 88.
    V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, J. Allan, Language models for financial news recommendation, in Proceedings of the Ninth International Conference on Information and Knowledge Management (CIKM), 2000, pp. 389–396Google Scholar
  19. 90.
    J.K. Lee, R.R. Trippi, S.C. Chu, H.S. Kim, K-folio: integrating the Markowitz model with a knowledge-based system. J. Portf. Manag. 17(1), 89–93 (1990)CrossRefGoogle Scholar
  20. 96.
    Q. Li, T. Wang, P. Li, L. Liu, Q. Gong, Y. Chen, The effect of news and public mood on stock movements. Inf. Sci. 278, 826–840 (2014)CrossRefGoogle Scholar
  21. 108.
    H. Markowitz, Portfolio selection. J. Financ. 7, 77–91 (1952)Google Scholar
  22. 120.
    A.K. Nassirtoussi, S. Aghabozorgi, T.Y. Waha, D.C.L. Ngo, Text mining for market prediction: a systematic review. Expert Syst. Appl. 41, 7653–7670 (2014)CrossRefGoogle Scholar
  23. 123.
    T.H. Nguyen, K. Shirai, J. Velcin, Sentiment analysis on social media for stock movement prediction. Expert Syst. Appl. 42, 9603–9611 (2015)CrossRefGoogle Scholar
  24. 124.
    M. Nofer, O. Hinz, Using Twitter to predict the stock market: where is the mood effect? Bus. Inf. Syst. Eng. 57(4), 229–242 (2015)CrossRefGoogle Scholar
  25. 139.
    S.T. Rachev, S.V. Stoyanov, A. Biglova, F.J. Fabozzi, An empirical examination of daily stock return distributions for U.S. Stocks, in Data Analysis and Decision Support (Springer, Berlin/Heidelberg, 2005), pp. 269–281Google Scholar
  26. 140.
    G. Rachlin, M. Last, D. Alberg, A. Kandel, Admiral: a data mining based financial trading system, in IEEE Symposium on Computational Intelligence and Data Mining, 2007Google Scholar
  27. 143.
    E.J. Ruiz, V. Hristidis, C. Castillo, A. Gionis, A. Jaimes, Correlating financial time series with micro-blogging activity, in Proceedings of the Fifth ACM International Conference on Web Search and Data Mining, 2012, pp. 513–522Google Scholar
  28. 148.
    R.P. Schumaker, H. Chen, Textual analysis of stock market prediction using breaking financial news: the AZFinText system. ACM Trans. Inf. Syst. 27(2), 12:1–12:19 (2009)Google Scholar
  29. 149.
    R.P. Schumaker, Y. Zhang, C.-N. Huang, H. Chen, Financial fraud detection using vocal, linguistic and financial cues. Decis. Support. Syst. 53, 458–464 (2012)CrossRefGoogle Scholar
  30. 153.
    W. Shen, J. Wang, Portfolio selection via subset resampling, in Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI), San Francisco, 2017, pp. 1517–1523Google Scholar
  31. 154.
    J. Si, A. Mukherjee, B. Liu, Q. Li, H. Li, X. Deng, Exploiting topic based Twitter sentiment for stock prediction, in The 51st Annual Meeting of the Association for Computational Linguistics (ACL), Sofia, 2013, pp. 24–29Google Scholar
  32. 155.
    J. Si, A. Mukherjee, B. Liu, S.J. Pan, Q. Li, H. Li, Exploiting social relations and sentiment for stock prediction, in Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1139–1145Google Scholar
  33. 166.
    N.N. Taleb, Finiteness of variance is irrelevant in the practice of quantitative finance. Complexity 14(3), 66–76 (2008)CrossRefGoogle Scholar
  34. 168.
    P.C. Tetlock, M. Saar-Tsechansky, S. Macskassy, More than words: quantifying language to measure firms’ fundamentals. J. Financ. 63(3), 1437–1467 (2008)CrossRefGoogle Scholar
  35. 171.
    R.R. Trippi, J.K. Lee, Artificial Intelligence in Finance & Investing (Irwin Professional Publishing, Chicago, 1996)Google Scholar
  36. 172.
    R.S. Tsay, Analysis of Financial Time Series, 2 edn. (Wiley-Interscience, Hoboken, 2005)CrossRefGoogle Scholar
  37. 175.
    M. Uhl, Reuters sentiment and stock returns. J. Behav. Financ. 15(4), 287–298 (2014)CrossRefGoogle Scholar
  38. 176.
    U.S. Bank, Our approach to asset allocation. Private Wealth Management Insights (2014)Google Scholar
  39. 187.
    B. Wuthrich, V. Cho, S. Leung, D. Permunetilleke, K. Sankaran, J. Zhang, Daily stock market forecast from textual web data, in IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, 1998, pp. 2720–2725Google Scholar
  40. 190.
    F.Z. Xing, E. Cambria, R.E. Welsch, Natural language based financial forecasting: a survey. Artif. Intell. Rev. 50(1), 49–73 (2018)CrossRefGoogle Scholar
  41. 191.
    F.Z. Xing, E. Cambria, R.E. Welsch, Growing semantic vines for robust asset allocation. Knowl. Based Syst. 165, 297–305 (2019)CrossRefGoogle Scholar
  42. 198.
    A. Yoshihara, K. Seki, K. Uehara, Leveraging temporal properties of news events for stock market prediction. Artif. Intell. Res. 5(1), 103–110 (2016)Google Scholar
  43. 201.
    W. Zhang, S. Skiena, Trading strategies to exploit blog and news sentiment, in Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media (ICWSM), Washington, DC, 2010, pp. 375–378Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Frank Xing
    • 1
  • Erik Cambria
    • 1
  • Roy Welsch
    • 2
  1. 1.School of Computer Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Sloan School of ManagementMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations