Potential Flows

  • Joseph H. SpurkEmail author
  • Nuri Aksel


As the discussions in Sects.  4.1 and  4.3 have already shown, solid walls and discontinuities in the tangential velocity represent surfaces from which angular velocity \( \left( {\vec{\omega } = {\text{curl}}\,{{\vec{u}} \mathord{\left/ {\vphantom {{\vec{u}} 2}} \right. \kern-0pt} 2}} \right) \) diffuses into the flow field. Since the widths of the developing regions (boundary layers) tend to zero in the limit Re → ∞, the flow can be treated within the framework of potential theory.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Bad KönigGermany
  2. 2.Lehrstuhl für Technische Mechanik und StrömungsmechanikUniversität BayreuthBayreuthGermany

Personalised recommendations