Advertisement

Quantitative Methods in Real Estate Mass Appraisal

  • Mariusz Doszyń
  • Krzysztof DmytrówEmail author
Conference paper
Part of the Springer Proceedings in Business and Economics book series (SPBE)

Abstract

Proposed introduction of the ad valorem tax on the real estate market makes it necessary to perform mass appraisal of the real estates. The goal of the chapter was verification of usefulness of econometric and statistical methods in the mass appraisal process. Exponential econometric model and partial τB Kendall correlation coefficients were applied to identify the impact of attributes and location on unit real estate price. The so-called Szczecin algorithm of real estate mass appraisal was the basis in both econometric and statistical approach. Accuracy of both approaches was checked by means of percentage error (PE) and mean absolute percentage error (MAPE) distributions. Real database containing information about 113 transactions with undeveloped land for housing purposes in Szczecin was used. The research results suggest that both methods can be used for real estate mass appraisal; however, the econometric approach gave slightly better results.

Keywords

Real estate mass appraisal Szczecin algorithm of real estate mass appraisal Qualitative variables Econometric modelling Partial τB Kendall correlation coefficient 

JEL Codes

C10 C51 R30 

References

  1. 1.
    Benjamin, J.D., Randall, S., Guttery, R.S., Sirmans, C.F.: Mass appraisal: an introduction to multiple regression analysis for real estate valuation. J. Real Estate Pract. Educ. 7(1), 65–77 (2004)Google Scholar
  2. 2.
    Bourassa, S.C., Cantoni, E., Hoesli, M.: Predicting house prices with spatial dependence: a comparison of alternative methods. Paper presented at the 15th Conference of the Pacific Rim Real Estate Society (PRRES), Sydney, Australia, 18–21 Jan 2009Google Scholar
  3. 3.
    Dell, G.: Regression, critical thinking, and the valuation problem today. Apprais. J. 85(3), 217–230 (2017)Google Scholar
  4. 4.
    Doszyń, M.: Statistical determination of impact of property attributes for weak measurement scales. Real Estate Manag. Valuat. 25(4), 75–84 (2017).  https://doi.org/10.1515/remav-2017-0031CrossRefGoogle Scholar
  5. 5.
    Doszyń, M., Hozer, J.: Szczeciński algorytm masowej wyceny nieruchomości—podejście ekonometryczne (Szczecin’s algorithm of real estate mass valuation—econometric approach). Stud. Pr. WNEiZ US 50(1), 19–30 (2017).  https://doi.org/10.18276/sip.2017.50/1-02CrossRefGoogle Scholar
  6. 6.
    Han, L., Zhu, J.: Using matrix of thresholding partial correlation coefficients to infer regulatory network. BioSystems 91, 158–165 (2008).  https://doi.org/10.1016/j.biosystems.2007.08.008CrossRefGoogle Scholar
  7. 7.
    Hozer, J., Foryś, I., Zwolankowska, M., Kokot, S., Kuźmiński, W.: Ekonometryczny algorytm masowej wyceny nieruchomości gruntowych (Econometric Algorithm of Land Properties Mass Valuation). Katedra Ekonometrii i Statystyki Uniwersytetu Szczecińskiego, Stowarzyszenie Pomoc i Rozwój, Szczecin (1999)Google Scholar
  8. 8.
    Isakson, H.R.: The review of real estate appraisals using multiple regression analysis. J. Real Estate Res. 15(2), 177–190 (1998)Google Scholar
  9. 9.
    Kauko, T., D’amato, M. (eds.): Mass Appraisal Methods: An International Perspective for Property Valuers. Blackwell Publishing Ltd (2008)Google Scholar
  10. 10.
    Kilpatrick, J.: Expert systems and mass appraisal. J. Prop. Invest. Financ. 29(4/5), 529–550 (2011).  https://doi.org/10.1108/14635781111150385CrossRefGoogle Scholar
  11. 11.
    Kolenda, M.: Taksonomia numeryczna. Klasyfikacja, porządkowanie i analiza obiektów wielocechowych (Numerical Taxonomy: Classification, Ranking and Analysis of Multivariable Objects). Wydawnictwo Akademii Ekonomicznej im. Oskara Langego we Wrocławiu, Wrocław (2006)Google Scholar
  12. 12.
    Lis, C.: Wykorzystanie metod ekonometryczno-statystycznych w procesie masowej wyceny nieruchomości lokalowych (Application of econometric and statistical methods in the process of mass valuation of residential properties). Typescript, doctor’s thesis, Uniwersytet Szczeciński (2003)Google Scholar
  13. 13.
    McCluskey, W.J., McCord, M., Davis, P.T., Haran, M., McIllhatton, D.: Prediction accuracy in mass appraisal: a comparison of modern approaches. J. Prop. Res. 30(4), 239–265 (2013).  https://doi.org/10.1080/09599916.2013.781204CrossRefGoogle Scholar
  14. 14.
    Pace, R.K., Gilley, O.W.: Estimation employing a priori information within mass appraisal and hedonic pricing models. J. Real Estate Financ. Econ. 3, 55–72 (1990)CrossRefGoogle Scholar
  15. 15.
    Pagourtzi, E., Assimakopoulos, V., Hatzichristos, T., French, N.: Real estate appraisal: a review of valuation methods. J. Prop. Invest. Financ. 21(4), 383–401 (2003).  https://doi.org/10.1108/14635780310483656CrossRefGoogle Scholar
  16. 16.
    Parker, R.I., Vannest, K.J., Davis, J.L., Sauber, S.B.: Combining nonoverlap and trend for single-case research: Tau-U. Behav. Ther. 42(2), 284–299 (2011).  https://doi.org/10.1016/j.beth.2010.08.006CrossRefGoogle Scholar
  17. 17.
    Zurada, J., Levitan, A.S., Guan, J.: A comparison of regression and artificial intelligence methods in a mass appraisal context. J. Real Estate Res. 33(3), 349–388 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Economics and ManagementUniversity of SzczecinSzczecinPoland

Personalised recommendations