Advertisement

An Attempt of Knowledge Handling for Experimental Economics Domain

  • Agnieszka KonysEmail author
Conference paper
Part of the Springer Proceedings in Business and Economics book series (SPBE)

Abstract

As experimental economics proved to be promising and dynamically growing research field, a lot of methodological and practical issues are raised in scientific literature. However, practical possibility of knowledge handling in whole experimental economics domain is limited. On the other hand, a development of knowledge management mechanisms, especially focusing on knowledge engineering and ontologies, provides auspicious means to handle knowledge. As the result of the mentioned above, in this chapter, an attempt of ontology as a form of knowledge engineering for handling knowledge in experimental economics is proposed. To confirm the applicability of the proposed approach, several case studies referring to selected problems of experimental economics are provided.

Keywords

Knowledge engineering Ontology Experimental economics Knowledge management Economic ontology Financial ontology 

References

  1. 1.
    Chong, A.Y.-L., Chan, F.T., Goh, M., Tiwari, M.K.: Do interorganisational relationships and knowledge-management practices enhance collaborative commerce adoption? Int. J. Prod. Res. 51, 2006–2018 (2013)CrossRefGoogle Scholar
  2. 2.
    Gunasekaran, A., Ngai, E.W.T.: Knowledge management in 21st century manufacturing. Int. J. Prod. Res. 45, 2391–2418 (2007)CrossRefGoogle Scholar
  3. 3.
    Desouza, K.C., Chattaraj, A., Kraft, G.: Supply chain perspectives to knowledge management: research propositions. J. Knowl. Manag. 7, 129–138 (2003)CrossRefGoogle Scholar
  4. 4.
    Chen, Y.-J.: Development of a method for ontology-based empirical knowledge representation and reasoning. Decis. Support Syst. 50, 1–20 (2010)CrossRefGoogle Scholar
  5. 5.
    Cheng, H., Lu, Y.-C., Sheu, C.: An ontology-based business intelligence application in a financial knowledge management system (2008)Google Scholar
  6. 6.
    Konys, A.: A framework for analysis of ontology-based data access. In: Nguyen, N.-T., Iliadis, L., Manolopoulos, Y., Trawiński, B. (eds.) 8th International Conference on Computational Collective Intelligence, ICCCI 2016, Part II. Lecure Notes in Computer Science, pp. 397–408. Springer International Publishing (2016)Google Scholar
  7. 7.
    Konys, A.: Knowledge-based approach to question answering system selection. In: Nunes, M., et al. (eds.) ICCCI 2015, Computational Collective Intelligence, Part I. LNAI, vol. 9329, pp. 361–370. Springer-Verlag (2015)Google Scholar
  8. 8.
    Konys, A.: Towards knowledge handling in ontology-based information extraction systems. Procedia Comput. Sci. 126, 2208–2218 (2018)CrossRefGoogle Scholar
  9. 9.
    Fernández-López, M., Gómez-Pérez, A., Juristo, N.: METHONTOLOGY: from ontological art towards ontological engineering. In: Spring Symposium on Ontological Engineering of AAAI, pp. 33–40. Stanford University, California (1997)Google Scholar
  10. 10.
    Konys, A.: An ontology-based knowledge modelling for a sustainability assessment domain. Sustainability 10, 300 (2018)CrossRefGoogle Scholar
  11. 11.
    Noy, N., McGuiness, D.: Ontology Development 101: A Guide to Creating Your First Ontology. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880 (2001)Google Scholar
  12. 12.
    Konys, A., Wątróbski, J., Różewski, P.: Approach to practical ontology design for supporting COTS component selection processes, ACIIDS 2013. In: Selamat, A., et al. (eds.) ACIIDS 2013, Part II. LNAI, vol. 7803, pp. 245–255. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Jankowski, J., Hamari, J., Wątróbski, J.: A gradual approach for maximising user conversion without compromising experience with high visual intensity website elements. Internet Res. 29(1), 194–217 (2018)CrossRefGoogle Scholar
  14. 14.
    Wątróbski, J., Jankowski, J., Piotrowski, Z.: The selection of multicriteria method based on unstructured decision problem description. In: International Conference on Computational Collective Intelligence, pp. 454–465. Springer, Cham (2014)CrossRefGoogle Scholar
  15. 15.
    Wątróbski, J., Jankowski, J., Ziemba, P., Karczmarczyk, A., Zioło, M.: Generalised framework for multi-criteria method selection. Omega 86, 107–124 (2019)CrossRefGoogle Scholar
  16. 16.
    Zhang, Z., Zhang, C., Ong, S.S.: Building an ontology for financial investment. In: Leung, K.S., Chan, L.W., Meng, H. (eds.) Intelligent Data Engineering and Automated Learning—IDEAL 2000. Data Mining, Financial Engineering, and Intelligent Agents. IDEAL 2000. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Siricharoen, W.V., Puttitanun, T.: Creating ontology chart using economy domain ontologies. Int. J. Digit. Content Technol. Appl. 3(2) (2009)Google Scholar
  18. 18.
    Martin, A., Manjula, M., Prasanna Venkatesan, V.: A business intelligence model to predict bankruptcy using financial domain ontology with association rule mining algorithm. IJCSI Int. J. Comput. Sci. 3(2) (2011)Google Scholar
  19. 19.
    Karczmarczyk, A., Jankowski, J., Wątróbski, J.: Multi-criteria decision support for planning and evaluation of performance of viral marketing campaigns in social networks. PLoS ONE 13(12), e0209372 (2018)CrossRefGoogle Scholar
  20. 20.
    Jankowski, J., Kolomvatsos, K., Kazienko, P., Watróbski, J.: Fuzzy modeling of user behaviors and virtual goods purchases in social networking platforms. J. UCS 22(3), 416–437 (2016)Google Scholar
  21. 21.
    Lara, R., Cantador, I., Castells, P.: Semantic web technologies for the financial domain. In: Cardoso, J., Hepp, M., Lytras, M.D. (eds.) The Semantic Web. Semantic Web and Beyond Computing for Human Experience, vol. 6. Springer, Boston, MA (2007)Google Scholar
  22. 22.
    Von Hoffen, M.: The sharing economy meets the semantic web: an ontology for the matchmaking of peers. In: IEEE 11th International Conference on Semantic Computing (ICSC) (2017)Google Scholar
  23. 23.
    Wątróbski, J., Ziemba, E., Karczmarczyk, A., Jankowski, J.: An index to measure the sustainable information society: the Polish households case. Sustainability 10(9), 3223 (2018)CrossRefGoogle Scholar
  24. 24.
    Mesaric, J., Dukic, B.: An approach to creating domain ontologies for higher education in economics. In: 29th International Conference on Information Technology Interfaces (2007)Google Scholar
  25. 25.
    Korczak, J., Dudycz, H., Dyczkowski, M.: Specification of financial knowledge—the case of an intelligent dashboard for managers. Bus. Inform. 2(28) (2013)Google Scholar
  26. 26.
    Łatuszyńska, M.: Experimental research in economics and computer simulation. In: Nermend, K., Łatuszynska, M. (eds.) Selected Issues in Experimental Economics. Proceedings of the 2015 Computational Methods in Experimental Economics (CMEE) Conference. Springer Proceedings in Business and Economics, pp. 151–170 (2015)Google Scholar
  27. 27.
    Lavbič, L., Vasilecas, O., Rupnik, R.: Ontology-based multi-agent system to support business users and management. Technol. Econ. Dev. Econ. (TEDE) 16(2), 327–347 (2010)CrossRefGoogle Scholar
  28. 28.
    Nermend, K., Piwowarski, M.: Cognitive neuroscience techniques in supporting decision making and the analysis of social campaign. In: Proceedings Book International Conference on Accounting, Business, Economics and Politics (ICABEP-2018), Erbil, Iraq, pp. 1–12 (2018)Google Scholar
  29. 29.
    Piwowarski, M.: Cognitive neuroscience techniques in examining the effectiveness of social advertisements. In: Neuroeconomic and Behavioral Aspects of Decision Making, pp. 341–352. Springer, Cham (2017)CrossRefGoogle Scholar
  30. 30.
    Piwowarski, M.: Neuromarketing tools in studies on models of social issue advertising impact on recipients. In: International Conference on Computational Methods in Experimental Economics, pp. 99–111. Springer, Cham (2017)CrossRefGoogle Scholar
  31. 31.
    Piwowarski, M.: EEG in analysis of the level of interest in social issue advertising. Procedia Comput. Sci. 126, 1945–1953 (2018)CrossRefGoogle Scholar
  32. 32.
    Staab, S., Schnurr, H.P., Studer, R., Sure, Y.: Knowledge processes and ontologies. IEEE Intell. Syst. 16, 26–34 (2001)CrossRefGoogle Scholar
  33. 33.
    Tarczyński, W.: Selected statistical methods in experimental studies. In: Nermend, K., Łatuszynska, M. (eds.) Selected Issues in Experimental Economics. Proceedings of the 2015 Computational Methods in Experimental Economics (CMEE) Conference. Springer Proceedings in Business and Economics, pp. 91–106 (2015)Google Scholar
  34. 34.
    Vecchiato, G., et al.: Neurophysiological tools to investigate consumer’s gender differences during the observation of TV commercials. Comput. Math. Methods Med. (2014).  https://doi.org/10.1155/2014/912981CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Computer Science and Information TechnologyWest Pomeranian University of Technology in SzczecinSzczecinPoland

Personalised recommendations