Advertisement

Optimization of Location Attractiveness Zones for the Purpose of Property Mass Appraisal

  • Sebastian Kokot
  • Sebastian GnatEmail author
Conference paper
Part of the Springer Proceedings in Business and Economics book series (SPBE)

Abstract

Mass land appraisal is a specific type of appraisal. A suitable algorithm used for mass appraisal constitutes one of the main determinants of the quality of achieved results. Many of the algorithms cluster real estate in accordance with specific criteria, such as a real estate type, its characteristics or location. Assuming a “real estate location” as a clustering basis, we use terms such as a taxation zone (which originates from a basic application of mass appraisal, which involves ad valorem real estate taxation), along with an elementary terrain (which originates from the nomenclature used in spatial planning). The main goal of this chapter is to find the solution to the designation of such zones, or real estate clusters for the purpose of mass land appraisal conducted with the use of Szczecin Algorithm of Real estate Mass Appraisal (SAREMA). Each mass appraisal algorithm has its own specificity, and consequently, it may pose various requirements to designated zones or real estate clusters (here referred to as location attractiveness zones—LAZ’s). The chapter presents the methods of LAZ’s designation formed on the basis of the existing cadastral districts, real estate market analysis, and hierarchical clustering. The chapter is additionally focused on the manner of determining LAZ optimal number and consequently the number of properties that will be included in an automated mass appraisal process in a given zone. The uniformity of isolated LAZ’s was subject to verification with the use of an entropy ratio, especially constructed for that purpose. The study was conducted on the land plots located in the city of Szczecin.

Keywords

Mass appraisal Real estate appraisal algorithms Hierarchical clustering 

References

  1. 1.
    Arguelles, M., Benavides, C., Fernandez, I.: A new approach to the identification of regional clusters: hierarchical clustering on principal components. Appl. Econ. 46(21), 2511–2519 (2014).  https://doi.org/10.1080/00036846.2014.904491CrossRefGoogle Scholar
  2. 2.
    Boongoen, T., Iam-On, N.: Cluster ensembles: a survey of approaches with recent extensions and applications. Comput. Sci. Rev. 28, 1–25 (2018).  https://doi.org/10.1016/j.cosrev.2018.01.003CrossRefGoogle Scholar
  3. 3.
    Bradbury, K.L., Mayer, C.J., Case, K.E.: Property tax limits, local fiscal behavior, and property values: evidence from Massachusetts under Proposition 2,5. J. Public Econ. 80, 287–311 (2001)CrossRefGoogle Scholar
  4. 4.
    Davidson, I., Ravi, S.S.: Agglomerative hierarchical clustering with constraints: theoretical and empirical results. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) Knowledge Discovery in Databases: PKDD 2005. Lecture Notes in Computer Science vol. 3721, pp. 59–70. Springer, Berlin, Heidelberg (2005).  https://doi.org/10.1007/11564126_1Google Scholar
  5. 5.
    Dedkova, O., Polyakova, I.: Development of mass valuation in Republic of Belarus. Geomatics Environ. Eng. 12(3), 29–39 (2018).  https://doi.org/10.7494/geom.2018.12.3.29CrossRefGoogle Scholar
  6. 6.
    Doszyń, M.: Ekonometryczna wycena nieruchomości. Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania 26, 41–52 (2012)Google Scholar
  7. 7.
    Fang, Y.X., Wang, Y.H.: Selection of the number of clusters via the bootstrap method. Comput. Stat. Data Anal. 56, 468–477 (2012).  https://doi.org/10.1016/j.csda.2011.09.003CrossRefGoogle Scholar
  8. 8.
    Guo, G.: Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP). Int. J. Geogr. Inf. Sci. 22(7), 801–823 (2008).  https://doi.org/10.1080/13658810701674970CrossRefGoogle Scholar
  9. 9.
    Hozer, J.: Regresja wieloraka a wycena nieruchomości. Rzeczoznawca Majątkowy 2, 13–14 (2001)Google Scholar
  10. 10.
    Hozer, J., Kokot, S., Foryś, I., Zwolankowska, M., Kuźmiński, W.: Ekonometryczny algorytm masowej wyceny nieruchomości gruntowych. Uniwersytet Szczeciński, Stowarzyszenie Pomoc i Rozwój, Szczecin (1999)Google Scholar
  11. 11.
    Hozer, J., Kokot, S., Kuźmiński, W.: Metody analizy statystycznej rynku w wycenie nieruchomości. PFSRM, Warszawa (2002)Google Scholar
  12. 12.
    Jahanshiri, E., Buyong, T., Shariff, A.R.M.: A review of property mass valuation models. Pertanika J. Sci. Technol. 19, 23–30 (2011)Google Scholar
  13. 13.
    Kantardzic, M.: Data Mining. Concepts, Models, Methods, and Algorithms. Wiley-IEEE Press (2003)Google Scholar
  14. 14.
    Kokot, S.: Model wielu regresji pojedynczych w wycenie nieruchomości. Studia i Materiały Towarzystwa Naukowego Nieruchomości 12(1), 106–122 (2004)Google Scholar
  15. 15.
    Kolesnikov, A., Trichina, E., Kauranne, T.: Estimating the number of clusters in a numerical data set via quantization error modeling. Pattern Recogn. 48(3), 941–952 (2015).  https://doi.org/10.1016/j.patcog.2014.09.017CrossRefGoogle Scholar
  16. 16.
    Korteweg, A., Sorensen, M.: Estimating loan-to-value distributions. Real Estate Econ. 44(1), 41–86 (2016).  https://doi.org/10.1111/1540-6229.12086CrossRefGoogle Scholar
  17. 17.
    Kotkowski, P.: Propozycja nowej klasyfikacji terenów miejskich. Acta Universitatis Lodziensis, Folia Geographica Socio-Oeconomica 2, 115–124 (1999)Google Scholar
  18. 18.
    Lis, C.: Sieci neuronowe a masowa wycena nieruchomości, vol. 318, pp. 331–338. Zeszyty Naukowe Uniwersytetu Szczecińskiego, Prace Katedry Ekonometrii i Statystyki, “Mikroekonometria w Teorii i Praktyce” (2001)Google Scholar
  19. 19.
    Müller, A.C., Guido, S.: Introduction to Machine Learning with Python. O’Reilly, Sebastopol (2016)Google Scholar
  20. 20.
    Park, B., Bae, J.K.: Using machine learning algorithms for housing price prediction: the case of Fairfax County, Virginia housing data. Expert Syst. Appl. 42, 2928–2934 (2015)CrossRefGoogle Scholar
  21. 21.
    Prystupa, M.: O potrzebie dalszych prac nad zastosowaniem regresji wielorakiej w wycenie nieruchomości. Rzeczoznawca Majątkowy 4, 16–17 (2000)Google Scholar
  22. 22.
    Raschka, S., Mirjalili, V.: Python Machine Learning. Packt Publishing, Birmingham, Mumbai (2017)Google Scholar
  23. 23.
    Sawiłow, E.: Analiza wybranych metod modelowania wartości katastralnych nieruchomości. Acta Scientiarum Polonorum Geodesia et Descriptio Terrarum 8(2), 27–38 (2009)Google Scholar
  24. 24.
    Suchecka, J. (ed.): Statystyka przestrzenna. C.H. Beck, Warsaw (2014)Google Scholar
  25. 25.
    Surowiec, G., Malczewska, A.: Automatyzacja procesu wyodrębniania stref izowartościowych nieruchomości w oparciu o zdjęcia lotnicze. Archiwum Fotogrametrii, Kartografii i Teledetekcji 11, 21–35 (2001)Google Scholar
  26. 26.
    Tzioumis, K.: Appraisers and valuation bias: an empirical analysis. Real Estate Econ. 45(3), 679–712 (2017)CrossRefGoogle Scholar
  27. 27.
    Unpingco, J.: Python for Probability, Statistics, and Machine Learning. Springer International Publishing (2016)Google Scholar
  28. 28.
    Wiśniewski, R.: Zastosowanie sztucznych sieci neuronowych do wyceny masowej. Wycena 1, 15–20 (1998)Google Scholar
  29. 29.
    Wu, X., Ma, T., Cao, J., Tian, Y., Alabdulkarim, A.: A comparative study of clustering ensemble algorithms. Comput. Electr. Eng. 68, 603–615 (2018).  https://doi.org/10.1016/j.compeleceng.2018.05.005CrossRefGoogle Scholar
  30. 30.
    Zurada, J., Levitan, A.S., Guan, J.: A comparison of regression and artificial intelligence methods in a mass appraisal context. J. Real Estate Res. 33(3), 349–387 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Economics and ManagementUniversity of SzczecinSzczecinPoland

Personalised recommendations