Emergency Evacuation Simulation in Open Air Events Using a Floor Field Cellular Automata Model

  • Dionysios StrongylisEmail author
  • Charalampos S. Kouzinopoulos
  • Georgios Stavropoulos
  • Konstantinos Votis
  • Dimitrios Tzovaras
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11805)


In order to enhance human safety in open air events and simulate evacuation scenarios, a two dimensional cellular automata model is proposed based on human behavior. To make the model more reasonable, human behavior effects like inertial, group effect, friction, pedestrian velocity, wall repulsion and panic behavior were included. A demo scenario of the proposed system in Pützchens Markt’s fair in Bonn with different numerical results is also discussed.


Cellular automata Floor field Evacuation simulation 



This work is co-funded by the European Union (EU) within the MONICA project under grant agreement number 732350. The MONICA project is part of the EU Framework Program for Research and Innovation Horizon 2020 and the IoT European Large-Scale Pilots Program.


  1. 1.
    Alizadeh, R.: A dynamic cellular automaton model for evacuation process with obstacles. Saf. Sci. 49(2), 315–323 (2011)CrossRefGoogle Scholar
  2. 2.
    Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A: Stat. Mech. Appl. 295(3–4), 507–525 (2001)CrossRefGoogle Scholar
  3. 3.
    Chooramun, N., Lawrence, P.J., Galea, E.R.: An agent based evacuation model utilising hybrid space discretisation. Saf. Sci. 50(8), 1685–1694 (2012)CrossRefGoogle Scholar
  4. 4.
    Fang, Z., Zong, X., Li, Q., Li, Q., Xiong, S.: Hierarchical multi-objective evacuation routing in stadium using ant colony optimization approach. J. Transp. Geogr. 19(3), 443–451 (2011)CrossRefGoogle Scholar
  5. 5.
    Helbing, D., Farkas, I.J., Molnar, P., Vicsek, T.: Simulation of pedestrian crowds in normal and evacuation situations. Pedestr. Evacuation Dyn. 21(2), 21–58 (2002)Google Scholar
  6. 6.
    Kemal, B., Putra, H., et al.: An observation of the walking speed of evacuees during a simulated tsunami evacuation in Padang, Indonesia. In: IOP Conference Series: Earth and Environmental Science, vol. 140, p. 012090. IOP Publishing (2018)Google Scholar
  7. 7.
    Kirchner, A., Nishinari, K., Schadschneider, A.: Friction effects and clogging in a cellular automaton model for pedestrian dynamics. Phys. Rev. E 67(5), 056122 (2003)Google Scholar
  8. 8.
    Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A: Stat. Mech. Appl. 312(1–2), 260–276 (2002)CrossRefGoogle Scholar
  9. 9.
    Li, D., Han, B.: Behavioral effect on pedestrian evacuation simulation using cellular automata. Saf. Sci. 80, 41–55 (2015)CrossRefGoogle Scholar
  10. 10.
    Liu, M., Zheng, X., Cheng, Y.: Determining the effective distance of emergency evacuation signs. Fire Saf. J. 46(6), 364–369 (2011)CrossRefGoogle Scholar
  11. 11.
    Lo, S.M., Huang, H.C., Wang, P., Yuen, K.: A game theory based exit selection model for evacuation. Fire Saf. J. 41(5), 364–369 (2006)CrossRefGoogle Scholar
  12. 12.
    Moussaïd, M., Perozo, N., Garnier, S., Helbing, D., Theraulaz, G.: The walking behaviour of pedestrian social groups and its impact on crowd dynamics. PloS one 5(4), e10047 (2010)CrossRefGoogle Scholar
  13. 13.
    Nishinari, K., Kirchner, A., Namazi, A., Schadschneider, A.: Extended floor field ca model for evacuation dynamics. IEICE Trans. Inf. Syst. 87(3), 726–732 (2004)Google Scholar
  14. 14.
    Proulx, G.: Occupant behaviour and evacuation. In: Proceedings of the 9th International Fire Protection Symposium, pp. 219–232 (2001)Google Scholar
  15. 15.
    Schadschneider, A., Kirchner, A., Nishinari, K.: From ant trails to pedestrian dynamics. Appl. Bionics Biomech. 1(1), 11–19 (2003)CrossRefGoogle Scholar
  16. 16.
    Song, W., Yu, Y., Fan, W., Zhang, H.: A cellular automata evacuation model considering friction and repulsion. Sci. China Ser. E: Eng. & Mater. Sci. 48(4), 403–413 (2005)CrossRefGoogle Scholar
  17. 17.
    Varas, A., et al.: Cellular automaton model for evacuation process with obstacles. Phys. A: Stat. Mech. Appl. 382(2), 631–642 (2007)CrossRefGoogle Scholar
  18. 18.
    Wang, J.H., Yan, W.Y., Zhi, Y.R., Jiang, J.C.: Investigation of the panic psychology and behaviors of evacuation crowds in subway emergencies. Procedia Eng. 135, 128–137 (2016)CrossRefGoogle Scholar
  19. 19.
    Yanagisawa, D., Nishinari, K.: Mean-field theory for pedestrian outflow through an exit. Phys. Rev. E 76(6), 061117 (2007)CrossRefGoogle Scholar
  20. 20.
    Yuan, W., Tan, K.H.: An evacuation model using cellular automata. Phys. A: Stat. Mech. Appl. 384(2), 549–566 (2007)CrossRefGoogle Scholar
  21. 21.
    Zheng, X., Zhong, T., Liu, M.: Modeling crowd evacuation of a building based on seven methodological approaches. Build. Environ. 44(3), 437–445 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dionysios Strongylis
    • 1
    Email author
  • Charalampos S. Kouzinopoulos
    • 1
  • Georgios Stavropoulos
    • 1
  • Konstantinos Votis
    • 1
  • Dimitrios Tzovaras
    • 1
  1. 1.Information Technologies InstituteCentre for Research and Technology HellasThessalonikiGreece

Personalised recommendations